We/Wm = ge/gm = 120N/1.2N
or
gm = ge/100 = 0.1 m/s^2
density = mass/volume = 3M/(4pir^3)
Re-arranging this equation, we get
M/r^2 = (4/3)×pi×(density)×r
From Newton's universal law of gravitation, the acceleration due to gravity on the moon gm is
gm = G(M/r^2) = G×(4/3)×pi×(density)×r
Solving for density, we get the expression
density = 3gm/(4×pi×G×r)
= 3(0.1)/(4×3.14×6.67×10^-11×2.74×10^6)
= 130.6 kg/m^3