Answer:
![\displaystyle S _{ \text{sphere}} =3629.84 {cm}^(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/jb0fgzdn9iiiw8gfw0yyjp2t37qq5hbk34.png)
Explanation:
we are given a ball
remember that,a ball is a Sphere
thus,
![\displaystyle S _{ \text{sphere}} = 4\pi {r}^(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/8y6d5dmi7fjxhs6zpa3vvkrmupl7kp0qeo.png)
given that, redious is 17 cm
substitute:
![\displaystyle S _{ \text{sphere}} = 4 * \pi * {17}^(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7k0ytcyryu8yjve4rciuu1k8phrkidg7hf.png)
simplify square:
![\displaystyle S _{ \text{sphere}} = 4 * \pi * 289](https://img.qammunity.org/2022/formulas/mathematics/high-school/ynsidlglxj5rtspgnjr8buldg84xu9mb1l.png)
substitute the approximate value of π:
![\displaystyle S _{ \text{sphere}} = 4 * 3.14 * 289](https://img.qammunity.org/2022/formulas/mathematics/high-school/2ubohvxmy7nxi5lghgwylsa4b3vpw6pqje.png)
simplify multiplication:
![\displaystyle S _{ \text{sphere}} =3629.84](https://img.qammunity.org/2022/formulas/mathematics/high-school/xcpenl1fb0nq6cg7eg6nx6c0ombbx2mitk.png)
hence, the surface area of the sphere is 3629.84 cm²