Answer:
![f(x) = 2[(3^x)/(9)] + 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/d6heizaocixt0q5dus3oi40obrocaf1wes.png)
![f(x) = 8(4)^x](https://img.qammunity.org/2022/formulas/mathematics/high-school/3xbywequsfclldej7e2hyuuvathi1ycrq0.png)
Explanation:
Given
![f(x) = 2(3)^(x-2) + 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/ae5i7hig2v738qy8neuz3vwb1xu6xgm09c.png)
![f(x) = (1)/(2)(4)^(x+2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/crw55wlogetu6hwcmrqbs4j190zxhgw798.png)
Required
Remove the h component
In a function, the h component is highlighted as:
![f(x) = a^(x+h)](https://img.qammunity.org/2022/formulas/mathematics/high-school/oqmsmzvav21970c7019i4xpriyiuvvocye.png)
So, we have:
![f(x) = 2(3)^(x-2) + 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/ae5i7hig2v738qy8neuz3vwb1xu6xgm09c.png)
Split the exponents using the following law of indices:
![a^m/a^n = a^(m-n)](https://img.qammunity.org/2022/formulas/mathematics/high-school/jvg9mt37uw4mi051o3y7i9pdmo7s4lbto9.png)
![f(x) = 2*(3^x)/(3^2) + 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/86d0b9krg09f85rilankvg3uel3d7konda.png)
![f(x) = 2*(3^x)/(9) + 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/ki0lutjtpz725046kjcq71g1rte86w5on9.png)
![f(x) = 2[(3^x)/(9)] + 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/d6heizaocixt0q5dus3oi40obrocaf1wes.png)
The h component has been removed
![f(x) = (1)/(2)(4)^(x+2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/crw55wlogetu6hwcmrqbs4j190zxhgw798.png)
Split the exponent using the following law of indices
![a^(m+n) =a^m * a^n](https://img.qammunity.org/2022/formulas/mathematics/high-school/t8t501u793jw6vdgdxxmcw1ljppmwpbuw7.png)
So, we have:
![f(x) = (1)/(2)(4)^x * 4^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/mco3dphvsh21jvuii9b1yv6mm6ql9x4mjz.png)
Express 4^2 as 16
![f(x) = (1)/(2)(4)^x * 16](https://img.qammunity.org/2022/formulas/mathematics/high-school/1b6312n7fsknz9h0ec46y6a5tv074qbvqv.png)
Divide 16 by 2
![f(x) = 8(4)^x](https://img.qammunity.org/2022/formulas/mathematics/high-school/3xbywequsfclldej7e2hyuuvathi1ycrq0.png)