Answer:
4.692 to 7.308
Explanation:
Given :
n1 = 25 ; n2 = 20 ;
Mean x1 = $12 ; mean x2 = $6
Standard deviation, s1 = 3 ; s2 = 1
Confidence interval :
(x1 - x2) ± t*√(s1²/n1) + (s2²/n2)
x1 - x2 = (12 - 6) = 6
√(s1²/n1) + (s2²/n2) = √(3²/25) + (1²/20) = 0.640
Degree of freedom :
((s1²/n1) + (s2²/n2))² / (s1²/n1)²/n1-1 + (s2²/n2)²/n2-1
Numerator = 0.1681
Denominator = 0.0054 + 0.0001315 = 0.0055315
Degree of freedom = 0.1681 / 0.0055315 = 30.38 = 30
Tcritical at 0.05, df = 30 = 2.042272
Hence ;
6 ± 2.042272(0.640)
6 ± 1.30705408
Lower boundary = 6 - 1.30705408 = 4.69294592
Upper boundary = 6 + 1.30705408 = 7.30705408
(4.693 ; 7.307)