181k views
3 votes
Find YZ pls fast correct

Find YZ pls fast correct-example-1
User Lawhatre
by
4.0k points

2 Answers

5 votes


\huge\text{Hey there!}


\large\textsf{21(2x - 6) = 30(x + 1)}


\large\textsf{21(2x) + 21(-6) = 30(x) + 30(1)}


\large\textsf{21(2x) = 42x}


\large\textsf{21(-6) = -126}


\large\textsf{30(x) = 30x}


\large\textsf{30(1) = 30}


\large\textsf{42x - 126 = 30x + 30}


\large\text{Put ALL your LIKE TERMS TOGETHER}


\large\text{NEW EQUATION: \textsf {42x - 30x = 126 + 30}}


\large\textsf{42x - 30x = 12x}


\large\textsf{126 + 30 = 156}


\large\text{NEW EQUATION: \textsf{12x = 156}}


\large\text{DIVIDE 12 to BOTH SIDES}


\mathsf{(12x)/(12)=(156)/(12)}


\large\text{CANCEL out: } \mathsf{(12)/(12)}\large\text{ because that gives you 1}


\large\text{KEEP: }\mathsf{(156)/(12)}\large\text{ because that helps you solve for your the given equation} \\\\\large\text{and your YZ result}


\mathsf{(156)/(12)=\bf 13}


\large\text{NEW and FINAL EQUATION: \textsf{30 + 1 + 13}}


\large\textsf{30 + 1 + 13}


\large\textsf{30 + 1 = \bf 31}


\large\textsf{= 31 + 13}


\large\textsf{= \bf 44}


\boxed{\boxed{\large\textsf{Answer: \huge \bf YZ = 44 }}}\huge\checkmark


\text{Good luck on your assignment and enjoy your day!}

~
\frak{Amphitrite1040:)}

User Nikobelia
by
5.4k points
3 votes

Answer:

  • 44

Explanation:

According to intersecting chords theorem:

  • 21(2x - 6) = 30(x + 1)
  • 42x - 126 = 30x + 30
  • 42x - 30x = 126 + 30
  • 12x = 156
  • x = 156/12
  • x = 13

Find the value of YZ:

  • YZ = 30 + 13 + 1 = 44
User Nikolaus
by
4.9k points