Answer:
Option B
Explanation:
Given quadratic equation is,
12a² + 9a + 7 = 0
By comparing this equation with standard quadratic equation,
hx² + kx + c = 0
h = 12, k = 9 and c = 7
By using quadratic formula,
a =
![(-k\pm√(k^2-4hc))/(2h)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ebqt2bso9924nttgf6nu7phthagnqzt118.png)
=
![(-9\pm√(9^2-4(12)(7)))/(2(12))](https://img.qammunity.org/2022/formulas/mathematics/high-school/9gcv1rqvsgj532aq7cwgohwwt60ud7s8dn.png)
=
![(-9\pm√(81-336))/(2(12))](https://img.qammunity.org/2022/formulas/mathematics/high-school/y0x5er9ekyccl24aq0tcdf7ipa9aoneemj.png)
=
![(-9\pm√(-255))/(24)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vqt02lruhvwctuf6ndu22atjgpdb8jj5h6.png)
=
![(-9\pm i√(255))/(24)](https://img.qammunity.org/2022/formulas/mathematics/high-school/sry1486cig935c80gsuhakuyai0vblqmbm.png)
a =
![(-9+ i√(255))/(24),(-9- i√(255))/(24)](https://img.qammunity.org/2022/formulas/mathematics/high-school/q5k6tkeqvwgcvblw0gu61nh3nz5ux1lacn.png)
Therefore, Option B will be the correct option.