167k views
3 votes
The acceleration of a motorcycle is given by ax(t)=At-Bt2,A=1.5m/s2,B=0.120m/s2,the motorcycle at rest at t=0 a)Find its position and velocity as function of time b)What maximum velocity it attains

1 Answer

2 votes

Answer:

(a)


v(t) = (At^2)/(2) -(Bt^3)/(3) --- velocity


x(t) = (At^3)/(6) -(Bt^4)/(12) + x(0) --- position

(b) The maximum velocity is: 39.0625m/s

Step-by-step explanation:

Given


a_x(t) =At -Bt^2


A = 1.5m/s^3


B = 0.120m/s^4

Solving (a): The position and velocity as a function

To calculate the change in velocity, we integrate the given acceleration

i.e.


\int\limits^(v(t))_(v(0)) {dv} = \int\limits^t_0 {a(t)} \, dt

Integrate


v|\limits^(v(t))_(v(0)) = \int\limits^t_0 {a(t)} \, dt

Substitute v(t) and v(0) for v


v(t) - v(0) = \int\limits^t_0 {a(t)} \, dt


v(0) = 0 ---- The initial velocity.

So, we have:


v(t) - 0 = \int\limits^t_0 {a(t)} \, dt


v(t) = \int\limits^t_0 {a(t)} \, dt

Substitute:
a_x(t) =At -Bt^2


v(t) = \int\limits^t_0 {[At -Bt^2]} \, dt

Integrate


v(t) = {(At^2)/(2) -(Bt^3)/(3)}|\limits^t_0

Substitute 0 and t for t


v(t) = [(At^2)/(2) -(Bt^3)/(3)] - [(A*0^2)/(2) -(B*0^3)/(3)]


v(t) = [(At^2)/(2) -(Bt^3)/(3)] - 0


v(t) = (At^2)/(2) -(Bt^3)/(3)

To calculate the change in position, we integrate the calculated velocity

i.e.


\int\limits^(x(t))_(x(0)) {dx} = \int\limits^t_0 {v(t)} \, dt

Integrate


x(t)|\limits^(x(t))_(x(0)) = \int\limits^t_0 {v(t)} \, dt

Substitute x(t) and x(0) for x(t)


x(t) - x(0) = \int\limits^t_0 {v(t)} \, dt

Substitute:
v(t) = (At^2)/(2) -(Bt^3)/(3)


x(t) - x(0) = \int\limits^t_0 {(At^2)/(2) -(Bt^3)/(3)} \, dt

Integrate


x(t) - x(0) = (At^3)/(6) -(Bt^4)/(12)}|\limits^t_0

Substitute t and 0 for t


x(t) - x(0) = [(At^3)/(6) -(Bt^4)/(12)] - [(A*0^3)/(6) -(B*0^4)/(12)]


x(t) - x(0) = [(At^3)/(6) -(Bt^4)/(12)] - [0]


x(t) - x(0) = (At^3)/(6) -(Bt^4)/(12)

Make x(t) the subject


x(t) = (At^3)/(6) -(Bt^4)/(12) + x(0)

Where x(0) represents the initial position

Solving (b): The maximum velocity

First, we calculate the time at which it attains the maximum height

Set acceleration to 0


a_x(t) =At -Bt^2


At - Bt^2 = 0

Factorize


t(A - Bt) = 0

Split


t = 0\ or\ A - Bt = 0

t can't be 0.

So, we have:


A - Bt = 0

Solve for t


-Bt = -A


t = (-A)/(-B)


t = (A)/(B)

Substitute:
A = 1.5m/s^3 and
B = 0.120m/s^4


t = (1.5m/s^3)/(0.120m/s^4)


t = (1.5)/(0.120)s


t = 12.5s

Substitute
t = 12.5s in v(t) to get the maximum velocity


v(t) = (At^2)/(2) -(Bt^3)/(3)


v(t) = (A*12.5^2)/(2) -(B*12.5^3)/(3)


v(t) = (156.25A)/(2) -(1953.125B)/(3)

Substitute:
A = 1.5m/s^3 and
B = 0.120m/s^4


vmax = (156.25*1.5)/2 -(1953.125*0.120)/3


v_(max) = 117.1875 - 78.125


v_(max) = 39.0625

User ElKePoN
by
6.6k points