Answer:
[ See the attached picture ]
The diagonals of a parallelogram bisect each other.
✧ Given : ABCD is a parallelogram. Diagonals AC and BD intersect at O.
✺ To prove : AC and BD bisect each other at O , i.e AO = OC and BO = OD.
Proof :
![\begin{array} c \hline \tt{SN}& \tt{STATEMENTS} & \tt{REASONS}\\ \hline 1& \sf{In \: \triangle ^(s) \:AOB \: and \: COD } \\ \sf{(i)}& \sf{ \angle \: OAB = \angle \: OCD\: (A)}& \sf{AB \parallel \: DC \: and \: alternate \: angles} \\ \sf{(ii)} &\sf{AB = DC(S)}& \sf{Opposite \: sides \: of \: a \: parallelogram} \\ \sf{(iii)} &\sf{ \angle \: OBA= \angle \: ODC(A)} &\sf{AB \parallel \:DC \: and \: alternate \: angles} \\ \sf{(iv)}& \sf{ \triangle \:AOB\cong \triangle \: COD}& \sf{A.S.A \: axiom}\\ \hline 2.& \sf{AO = OC \: and \: BO = OD}& \sf{Corresponding \: sides \: of \: congruent \: triangle}\\ \hline 3.& \sf{AC \: and \: BD \: bisect \: each \: other \: at \: O}& \sf{From \: statement \: (2)}\\ \\ \hline\end{array}. </p><p>Proved ✔ </p><p></p><p>]()
♕ And we're done! Hurrayyy! ;)
# STUDY HARD! So, Tomorrow you can answer people like this , " Dude , I just bought this expensive mobile phone but it is not that expensive for me" [ - Unknown ] :P
☄ Hope I helped! ♡
☃ Let me know if you have any questions! ♪
☂
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁