110k views
3 votes
Trigonometry


\cos(45 - x) * \cos(x) - \sin(45 - x) * \sin(x)


User Navi
by
5.0k points

1 Answer

1 vote

Answer:

​√2/2

Step-by-step explanation:

cos(45 - x)cos(x) - sin(45 -x)sin(x)

Using trigonometric identities,

cos(A - B) = cosAcosB + sinAsinB where A = 45 and B = x. So,

cos(45 - x) = cos45cosx + sin45sinx

= (1/√2)cosx + (1/√2)sinx (since sin45 = cos45 = 1/√2)

Also,

sin(A - B) = sinAcosB - cosAsinB where A = 45 and B = x. So,

sin(45 - x) = sin45cosx - cos45sinx

= (1/√2)cosx - (1/√2)sinx (since sin45 = cos45 = 1/√2)

So.

cos(45 - x)cos(x) - sin(45 -x)sin(x) = [(1/√2)cosx + (1/√2)sinx]cos(x) - [(1/√2)cosx - (1/√2)sinx]sin(x)

= (1/√2)cos²x + (1/√2)sinxcos(x) - [(1/√2)sinxcosx - (1/√2)sin²x]

= (1/√2)cos²x + (1/√2)sinxcos(x) - (1/√2)sinxcosx + (1/√2)sin²x

= (1/√2)cos²x + (1/√2)sin²x

= (1/√2)[cos²x + sin²x]

= (1/√2) (since cos²x + sin²x = 1)

= 1/√2 × √2/√2

= √2/2

User Jayatubi
by
3.8k points