181k views
0 votes
X^y=y^x and x=2y prove that y=2.

1 Answer

1 vote

Answer:


{x}^(y) = {y}^(x) \: - - - (1)


x = 2y \: - - - (2)

Substitute (2) into (1):


{2y}^(y) = {y}^(2y)

Log both sides:


lg(2 {y}^(y) ) = lg(y^(2y) )


y \: lg(2y) = 2y(lg \: y)


y \: lg(2) + y \: lg(y) = 2y \: lg(y)


y \: lg(2) = 2y \: lg(y) - y \: lg(y)


y \: lg(2) = y \: lg(y)

Divide by y on both sides:


lg(2) = lg(y)


{10}^(lg(2)) = {10}^(lg(y))

2= y

y= 2 (proved)

Step-by-step explanation:

• step 5: lg(m)^n= nlg(m)

• Step 6: lg(mn)= lg(m) +lg(n)

User Sogartar
by
4.5k points