Given:
The quadratic equation is:
![10m^2-7m+3=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/rxkepmpiz7o1ev53x0fn3y078mlgs2woc7.png)
To find:
The solutions for the given equation by using the quadratic formula.
Solution:
If a quadratic equation is
, then the quadratic formula is:
![x=(-b\pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2022/formulas/mathematics/high-school/jd1mt5sjex107aal1tv0tsad9i7ertp965.png)
We have,
![10m^2-7m+3=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/rxkepmpiz7o1ev53x0fn3y078mlgs2woc7.png)
Here,
. Using the quadratic formula, we get
![m=(-(-7)\pm √((-7)^2-4(10)(3)))/(2(10))](https://img.qammunity.org/2022/formulas/mathematics/high-school/ln5jaxci432iphdm09rrvkttgi8ecp5h0g.png)
![m=(7\pm √(49-120))/(20)](https://img.qammunity.org/2022/formulas/mathematics/high-school/di7dbba368ff0z0kokxopuuceh2llavcf4.png)
![m=(7\pm √(-71))/(20)](https://img.qammunity.org/2022/formulas/mathematics/high-school/jsc2cjr0ib92mxvq9mohqvu7dnzcqf9xuc.png)
![[\because √(-a)=i√(a),a>0]](https://img.qammunity.org/2022/formulas/mathematics/high-school/q9uovspfqr8o1dyycy4wzbh8vuial01h6g.png)
Therefore, the solution set of the given equation is
. Hence, the correct option is D.