Given:
The graph of a quadratic function passes through the points (5,31) (3,11) (0,11).
To find:
The equation of the quadratic function.
Solution:
A quadratic function is defined as:
...(i)
It is passes through the point (0,11). So, substitute
in (i).
![11=a(0)^2+b(0)+c](https://img.qammunity.org/2022/formulas/mathematics/college/n5chlancm0r3yafkjuwt20q1t32975fniv.png)
![11=c](https://img.qammunity.org/2022/formulas/mathematics/college/ugqn0wpcfsnvoprub5joq3o6ty8w2yhb8o.png)
Putting
in (i), we get
...(ii)
The quadratic function passes through the point (5,31). So, substitute
in (ii).
![20=25a+5b](https://img.qammunity.org/2022/formulas/mathematics/college/yw2ii73vsp1mn7qw3z0ikaciqvolsuuvev.png)
Divide both sides by 5.
...(iii)
The quadratic function passes through the point (3,11). So, substitute
in (ii).
Divide both sides by 3.
...(iv)
Subtracting (iv) from (iii), we get
![4-0=5a+b-3a-b](https://img.qammunity.org/2022/formulas/mathematics/college/oqp4ovqvnp7cl97xk47r2hlvyjf0tdfj2c.png)
![4=2a](https://img.qammunity.org/2022/formulas/mathematics/college/43s6sxkofges4zz94p8y48f350fvs8wphj.png)
![(4)/(2)=a](https://img.qammunity.org/2022/formulas/mathematics/college/qpbnfutks94re1fdcv1oqq3hougliyvozy.png)
![2=a](https://img.qammunity.org/2022/formulas/mathematics/high-school/fb5i0aih1444snxq3qz3pxv2jhogtxhe4i.png)
Putting
in (iv), we get
![0=3(2)+b](https://img.qammunity.org/2022/formulas/mathematics/college/gk6n02zyflv6uxgr9f9s7fk5m03kkvhh2v.png)
![0=6+b](https://img.qammunity.org/2022/formulas/mathematics/college/g71fhnerp3gk267tzjt5kg62glcgjxmo5m.png)
![-6=b](https://img.qammunity.org/2022/formulas/mathematics/college/w19oetxsca59yztfxvpxrb34sy14e18fl8.png)
Putting
in (ii), we get
Therefore, the required quadratic equation is
.