113k views
5 votes
If 0°<0<90° and sin0=12/13, find cos0 using trigonometric identities.

• 12/5
• 5/12
• 12/13
• 5/13

1 Answer

4 votes

here's the solution,

we know :


\sin( \theta) = (perpendicular)/(hypotenuse)

So,


(p)/(h) = (12)/(13)

so.. let the perpendicular be 12x and hypotenuse be 13x

now,

by applying pythagoras theorem,


  • b {}^(2) = h {}^(2) - p {}^(2)

where,

  • b = base
  • h = hypotenuse
  • p = perpendicular

So,


  • b {}^(2) = ({13x})^(2) - ({12x})^(2)

  • b {}^(2) = 169x {}^(2) - 144x {}^(2)

  • {b}^(2) = 25x {}^(2)

  • b = 5x

so,


  • \cos( \theta) = (b)/(h)


  • \cos( \theta) = (5x)/(13x)


  • \cos( \theta) = (5)/(13)

hope it helps !!

User Adamup
by
3.6k points