Answer:
(a)
![\sigma = 7.04](https://img.qammunity.org/2022/formulas/mathematics/college/zv73fzdhhn46wvil0uyocggtpbdn6huix8.png)
(b)
![\sigma = 14.1](https://img.qammunity.org/2022/formulas/mathematics/college/629jhw4ihorcp4bn20pwzn4kespdc0gyb7.png)
(c) The population standard deviation is multiplied by k
Explanation:
Given
![Dataset: 12, 7, 18, 23, 24, 27](https://img.qammunity.org/2022/formulas/mathematics/college/ps63a16gzmlxq90wv6o7osnv1hur72hn3s.png)
Solving (a): The population standard deviation
Start by calculating the mean
![\mu = (\sum x)/(n)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ozoa2m4eeaw6kkvvqvy85tc1u282w986b1.png)
![\mu = (12+7+18+23+24+27)/(6)](https://img.qammunity.org/2022/formulas/mathematics/college/g51qdybmlf6q7hhkmtn9jn7qd8w5uf42hv.png)
![\mu = (111)/(6)](https://img.qammunity.org/2022/formulas/mathematics/college/mzz11ka533tz8a7g0s566nqmfd7dxt0hby.png)
![\mu = 18.5](https://img.qammunity.org/2022/formulas/mathematics/college/vx43wuprb1dicqyy6vd76ykf0pnbf3s78l.png)
The population standard deviation is:
![\sigma = \sqrt{(\sum(x - \mu)^2)/(n)}](https://img.qammunity.org/2022/formulas/mathematics/college/h8gchu6ww1dlpk9vu4vnqcqr5q0vuclvqy.png)
This gives:
![\sigma = \sqrt{((12-18.5)^2 + (7 - 18.5)^2 + (18-18.5)^2 + (23-18.5)^2 + (24 - 18.5)^2 + (27 - 18.5)^2)/(6)}](https://img.qammunity.org/2022/formulas/mathematics/college/16cwof4u25jlfa01etxq70fjpd951k94xi.png)
![\sigma = \sqrt{(297.5)/(6)}](https://img.qammunity.org/2022/formulas/mathematics/college/q48uehvoh1847fa9ku4ezlaarcuf79jbo9.png)
![\sigma = √(49.5833)](https://img.qammunity.org/2022/formulas/mathematics/college/vsno2sjxbbvjahohtug38g7wu6ese7llqf.png)
![\sigma = 7.04](https://img.qammunity.org/2022/formulas/mathematics/college/zv73fzdhhn46wvil0uyocggtpbdn6huix8.png)
Solving (b): Double the dataset and calculate the new population standard deviation
The new dataset is:
![Dataset: 24, 14, 36, 46, 48, 54](https://img.qammunity.org/2022/formulas/mathematics/college/wucywnh88xrcjk4j673tesb2v73cojou6v.png)
Start by calculating the mean
![\mu = (\sum x)/(n)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ozoa2m4eeaw6kkvvqvy85tc1u282w986b1.png)
![\mu = (24+ 14+ 36+ 46+ 48+ 54)/(6)](https://img.qammunity.org/2022/formulas/mathematics/college/k6nptgc02qxuxpmim0lwjidjbbhvnmlfjf.png)
![\mu = (222)/(6)](https://img.qammunity.org/2022/formulas/mathematics/college/5j75ilaf5b3n8jnaw4xqsg38fe8oajz174.png)
![\mu = 37](https://img.qammunity.org/2022/formulas/mathematics/college/yhve8wq49fusoh4pui1q346xxovxijdgxz.png)
The population standard deviation is:
![\sigma = \sqrt{(\sum(x - \mu)^2)/(n)}](https://img.qammunity.org/2022/formulas/mathematics/college/h8gchu6ww1dlpk9vu4vnqcqr5q0vuclvqy.png)
This gives:
![\sigma = \sqrt{((24-37)^2 +(14-37)^2 +(36-37)^2 +(46-37)^2 +(48-37)^2 +(54-37)^2)/(6)}](https://img.qammunity.org/2022/formulas/mathematics/college/8vnp1zwq3pwyiqqnojusiicluul3sqkm7e.png)
![\sigma = \sqrt{(1190)/(6)}](https://img.qammunity.org/2022/formulas/mathematics/college/qgxz8jlddjrc1rj2dut9mjrorjvcrciqyb.png)
![\sigma = √(198.33)](https://img.qammunity.org/2022/formulas/mathematics/college/fabqgeefixk05ixc5sj3ul0ecx0hbhu3s1.png)
![\sigma = 14.1](https://img.qammunity.org/2022/formulas/mathematics/college/629jhw4ihorcp4bn20pwzn4kespdc0gyb7.png)
Solving (c): What happens when the dataset is multiplied by k
In (a), we have:
![\sigma = 7.04](https://img.qammunity.org/2022/formulas/mathematics/college/zv73fzdhhn46wvil0uyocggtpbdn6huix8.png)
In (b), when the dataset is doubled,
![\sigma = 14.1](https://img.qammunity.org/2022/formulas/mathematics/college/629jhw4ihorcp4bn20pwzn4kespdc0gyb7.png)
This implies that when the dataset is multiplied by k, the population standard deviation will be multiplied by the same factor:
i.e.
![New \sigma = k * \sigma](https://img.qammunity.org/2022/formulas/mathematics/college/iurvot5nosj03vv4rejmxl4v9j56g40t2s.png)