15.8k views
5 votes
15 points!
Find the indicated limit, if it exists.​

15 points! Find the indicated limit, if it exists.​-example-1

1 Answer

3 votes

Answer:

The limit does not exist

General Formulas and Concepts:

Calculus

Limits

  • Right-Side Limit:
    \displaystyle \lim_(x \to c^+) f(x)
  • Left-Side Limit:
    \displaystyle \lim_(x \to c^-) f(x)

Limit Rule [Constant]:
\displaystyle \lim_(x \to c) b = b

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_(x \to c) x = c

Limit Property [Addition/Subtraction]:
\displaystyle \lim_(x \to c) [f(x) \pm g(x)] = \lim_(x \to c) f(x) \pm \lim_(x \to c) g(x)

Explanation:

*Note:

In order for the limit to exist, the right-hand and left-hand limits must equal each other

Step 1: Define

Identify


\displaystyle f(x) = \left \{ {{x + 10,\ x < 8} \atop {10 - x,\ x \geq 8}} \right.

Step 2: Find Right-Hand Limit

  1. Substitute in function [Limit]:
    \displaystyle \lim_(x \to 8^+) 10 - x
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 8^+) 10 - x = 10 - 8 = 2

Step 3: Find Left-Hand Limit

  1. Substitute in function [Limit]:
    \displaystyle \lim_(x \to 8^-) x + 10
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 8^+) x + 10 = 8 + 10 = 18

∴ since
\displaystyle \lim_(x \to 8^+) f(x) \\eq \lim_(x \to 8^-) f(x),
\displaystyle \lim_(x \to 8) f(x) = DNE

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

User Dirk Vollmar
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories