15.7k views
5 votes
15 points!
Find the indicated limit, if it exists.​

15 points! Find the indicated limit, if it exists.​-example-1

1 Answer

3 votes

Answer:

The limit does not exist

General Formulas and Concepts:

Calculus

Limits

  • Right-Side Limit:
    \displaystyle \lim_(x \to c^+) f(x)
  • Left-Side Limit:
    \displaystyle \lim_(x \to c^-) f(x)

Limit Rule [Constant]:
\displaystyle \lim_(x \to c) b = b

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_(x \to c) x = c

Limit Property [Addition/Subtraction]:
\displaystyle \lim_(x \to c) [f(x) \pm g(x)] = \lim_(x \to c) f(x) \pm \lim_(x \to c) g(x)

Explanation:

*Note:

In order for the limit to exist, the right-hand and left-hand limits must equal each other

Step 1: Define

Identify


\displaystyle f(x) = \left \{ {{x + 10,\ x < 8} \atop {10 - x,\ x \geq 8}} \right.

Step 2: Find Right-Hand Limit

  1. Substitute in function [Limit]:
    \displaystyle \lim_(x \to 8^+) 10 - x
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 8^+) 10 - x = 10 - 8 = 2

Step 3: Find Left-Hand Limit

  1. Substitute in function [Limit]:
    \displaystyle \lim_(x \to 8^-) x + 10
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 8^+) x + 10 = 8 + 10 = 18

∴ since
\displaystyle \lim_(x \to 8^+) f(x) \\eq \lim_(x \to 8^-) f(x),
\displaystyle \lim_(x \to 8) f(x) = DNE

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

User Dirk Vollmar
by
5.7k points