234k views
18 votes
Please look at the attachment. Calculus.

Please look at the attachment. Calculus.-example-1

2 Answers

11 votes

We are given with a Indefinite integral , and we need to find it's value ,so , let's start


{:\implies \quad \displaystyle \sf \int (1)/(1+\sin (x))dx}

Now , Rationalizing the denominator i.e multiplying the numerator and denominator by the conjugate of denominator i.e 1 - sin(x)


{:\implies \quad \displaystyle \sf \int \bigg\{(1)/(1+\sin (x))* (1-\sin (x))/(1-\sin (x))\bigg\}dx}


{:\implies \quad \displaystyle \sf \int (1-\sin (x))/(1-\sin^(2)(x))dx\quad \qquad \{\because (a-b)(a+b)=a^(2)-b^(2)\}}


{:\implies \quad \displaystyle \sf \int (1-\sin (x))/(\cos^(2)(x))dx\quad \qquad \{\because \sin^(2)(x)+\cos^(2)(x)=1\}}


{:\implies \quad \displaystyle \sf \int \bigg\{(1)/(\cos^(2)(x))-(\sin (x))/(\cos^(2)(x))\bigg\}dx}


{:\implies \quad \displaystyle \sf \int \bigg\{\sec^(2)(x)-(\sin (x))/(\cos (x))* (1)/(\cos (x))\bigg\}dx\quad \qquad \bigg\{\because (1)/(\cos (\theta))=\sec (\theta)\bigg\}}


{:\implies \quad \displaystyle \sf \int \{\sec^(2)(x)-\tan (x)\sec (x)\}\quad \qquad \bigg\{\because (\sin (\theta))/(\cos (\theta))=\tan (\theta)\bigg\}}

Now , we know that ;


  • {\boxed{\displaystyle \bf \int \{f(x)\pm g(x)\}dx=\int f(x)\: dx \pm \int g(x)\: dx}}

Using this we have ;


{:\implies \quad \displaystyle \sf \int \sec^(2)(x)dx-\int \tan (x)\sec (x)dx}

Now , we also knows that ;


  • {\boxed{\displaystyle \bf \int \sec^(2)(x)=\tan (x)+C}}


  • {\boxed{\displaystyle \bf \int \tan (x)\sec (x)dx=\sec (x)+C}}

Where C is the Arbitrary Constant . Using this


{:\implies \quad \displaystyle \sf \tan (x)-\sec (x)+C}


{:\implies \quad \bf \therefore \quad \underline{\underline{\displaystyle \bf \int (1)/(1+\sin (x))dx=\tan (x)-\sec (x)+C \:\: \forall \:\: C\in \mathbb{R}}}}

User Kishan Busa
by
8.7k points
8 votes

Multiply the numerator and denominator by 1 - sin(x) :


(1)/(1 + \sin(x)) * (1 - \sin(x))/(1 - \sin(x)) = (1 - \sin(x))/(1 - \sin^2(x)) = (1-\sin(x))/(\cos^2(x))

Now separate the terms in the fraction and rewrite them as


\frac1{\cos^2(x)} - (\sin(x))/(\cos^2(x)) = \sec^2(x) - \tan(x) \sec(x)

and you'll recognize some known derivatives,


(d)/(dx) \tan(x) = \sec^2(x)


(d)/(dx) \sec(x) = \sec(x) \tan(x)

So, we have


\displaystyle \int (dx)/(1 + \sin(x)) = \int (\sec^2(x) - \sec(x) \tan(x)) \, dx = \boxed{\tan(x) - \sec(x) + C}

which we can put back in terms of sin and cos as


\tan(x) - \sec(x) = (\sin(x))/(\cos(x))-\frac1{\cos(x)} = (\sin(x)-1)/(\cos(x))

User Paolo Falabella
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories