Final answer:
The formula A=1/2(b+c)h is rearranged to highlight the height as h = 2A / (b+c). This rearrangement is useful for finding the height when the area and base lengths are given.
Step-by-step explanation:
The student is asking to rearrange the formula A=1/2(b+c)h to solve for the height h. In this formula, A represents the cross-sectional area, b and c are the lengths of the base and the top of the trapezoid respectively, and h is the height (depth) of the trapezoid.
To isolate h, we multiply both sides of the equation by 2:
2A = (b+c)h
Next, divide both sides by (b+c) to solve for h:
h = 2A / (b+c)
This gives us the rearranged formula to find the height when the area A and the lengths b and c are known.