Given:
.
To find:
The value of x.
Solution:
In triangles ABC and ADE,
(Right angles)
(Common angles)
(AA property of similarity)
We know that the corresponding sides of similar triangles are proportional. So,
![(AB)/(AD)=(BC)/(DE)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4g8sz4uqpptdk80w7xrk9jefpny6n63rg8.png)
![(6)/((6+4))=(2)/(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/nh7zzcc07k7tcs9o1u7j5zrnjx0lrti5e2.png)
![(6)/(10)=(2)/(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/d3is7k9btkekr78um1i6w51pb77y509kd1.png)
![(3)/(5)=(2)/(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/fobbo0yx9353w6pl4dl1idg2flocxk7w0r.png)
On cross multiplication, we get
![3* x=5* 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/w0oyy7rs6jiru0289doo35rt3k32430z99.png)
![3x=10](https://img.qammunity.org/2022/formulas/mathematics/high-school/rzsh2w9ed6p04ibbhfdalgmt7fo9ajg5ws.png)
![x=(10)/(3)](https://img.qammunity.org/2022/formulas/mathematics/high-school/bsbca1n700pb930bb5ezagpmsessrybu5x.png)
Therefore, the value of x is
units.