21.3k views
1 vote
This question is designed to be answered without a calculator. Use the antiderivative formula shown, where f(u) represents a function. Integral of (l n u) d u = u ln u – f(u) + C Which function represents f(u)?

1 Answer

3 votes

Answer:


f(u) = u

Explanation:

Given


\int {\ln(u)} \, du = u[\ln(u) - f(u)] + c

Required

Find f(u)

To do this, we start by integrating the left-hand side


\int {\ln(u)} \, du = u\ln(u) - f(u)+ c

Using integration by parts, we have:


\int {fg'} = fg - \int f'g

So, we have:


f = \ln(u)

Differentiate


f'=(1)/(u)


g' = 1

Integrate


g=u

So:


\int {fg'} = fg - \int f'g


\int \ln(u)\ du = \ln(u) * u - \int (1)/(u) * u\ du


\int \ln(u)\ du = u\ln(u) - \int \ du

So, we have:


u\ln(u) - \int \ du = u\ln(u) - f(u) + c

Integrate du using constant rule


u\ln(u) - u + c = u\ln(u) - f(u) + c

Subtract c from both sides


u\ln(u) - u = u\ln(u) - f(u)

Subtract u ln(u) from both sides


- u = - f(u)

Rewrite as:


f(u) = u

User Shady Mostafa
by
4.3k points