Answer:
1) 23°
2) 55°
Explanation:
Q1)
GIVEN :-
TO FIND :-
PROCEDURE :-
ABCD is a rectangle. In a rectangle , all the angles measure 90°. So,
∠ADC = 90°
⇒ ∠ADB + ∠BDE = 90°
⇒ ∠BDE = 90 - 64 = 26°
In a triangle , measure of an exterior angle of a triangle is the sum of the two opposite interior angles. So in ΔEBD ,
∠EBD + ∠EDB = ∠BEC
⇒ a° + 26° = 49°
⇒ a° = 49 - 26 = 23°
Q2)
GIVEN :-
TO FIND :-
PROCEDURE :-
ABCD is a rectangle. In a rectangle , all the angles measure 90°. So,
∠ABC = 90°
⇒ ∠CBD + ∠DBE = 90°
⇒ ∠DBE = 90 - a
In a triangle , measure of an exterior angle of a triangle is the sum of the two opposite interior angles. So in ΔEBD ,
∠EBD + EDB = ∠AED
⇒ (90 - a)° + 17° = 52°
⇒ 107 - a = 52
⇒ -a = 52 - 107 = -55
(Multiplying -1 to both sides)
⇒ a = 55°