Given:
A right angle triangle with legs x and 10.
The angle opposite to the side with measure 10 is 33 degrees.
To find:
The value of x.
Solution:
We know that, in a right angle triangle,
![\tan \theta=(Perpendicular)/(Base)](https://img.qammunity.org/2022/formulas/mathematics/high-school/oviszp01ztar1sd4v8gvpgkffiw9v3snud.png)
In the given triangle,
![\tan 33^\circ=(10)/(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/2xnq1l0p9kwl7ybuxxsnan53c7eyjobxjg.png)
![x=(10)/(\tan 33^\circ)](https://img.qammunity.org/2022/formulas/mathematics/high-school/75rtoqpw8rfsiyp5fik3icwehkidvb34mq.png)
![x=15.39864](https://img.qammunity.org/2022/formulas/mathematics/high-school/ehra9879lrwa2v3pr7t74wtax53l6gwp7a.png)
![x\approx 15.4](https://img.qammunity.org/2022/formulas/mathematics/high-school/y0zs7dcqnv82wtcv8sr2wpgnfyf72gbsom.png)
Therefore, the value of x is 15.4 units.