Answer:
6 mins
Explanation:
Given that;
T(t) = Ce^-kt + T(s)
Since T(t) = 200◦F, and T(s) = 70◦F where t = 0
200= Ce^-k(0) + 70
C= 200 - 70
C = 130
Then when T(t) = 190◦F and t= 1s ;
190 = 130e^-(k *1) + 70
190 - 70 = 130e-^(k *1)
120/130 = e^k
0.923 = e^-k
-k = ln(0.923)
k = 0.08
To determine the time taken to reach a temperature of 150◦F
150 = 130e^-(0.08t) + 70
150 - 70/130 = e^-(0.08t)
0.6154 = e^-(0.08t)
-(0.08t) = ln 0.6154
0.08t = 0.4855
t = 0.4855/0.08
t = 6 mins