Answer:
m∠B = 79°
Explanation:
For A given Figure
m∠A = 14x - 11°
m∠B = 8x + 7°
m∠C = 5x + 18°
m∠D = 10x + 13°
Now, For Quadrilateral we know that the sum of all angle in Quadrilateral is 360°
So,
(14x - 11°) + (8x + 7°) + (5x + 18°) + (10x + 13°) = 360°
14x - 11° + 8x + 7° + 5x + 18° + 10x + 13° = 360°
Now, Combine Like Terms
i.e.,
14x - 11° + 8x + 7° + 5x + 18° + 10x + 13° = 360°
14x + 8x + 5x + 10x - 11° + 7° + 18° + 13° = 360°
37x + 27° = 360°
Now, Subtract 27 from both side
37x + 27° - 27° = 360° - 27°
37x = 333°
Now, Divide 37 from both side
37x/37° = 333°/37°
x = 9°
Here, put the value of x in m∠B
m∠B = 8x + 7° = 8(9) + 7° = 72° + 7° = 79°
Thus, m∠B = 79°
FOR VERIFICATION ONLY:
(14x - 11°) + (8x + 7°) + (5x + 18°) + (10x + 13°) = 360°
37x + 27° = 360°
37(9) + 27° = 360°
333° + 27° = 360°
360° = 360°
Hence, L.H.S = R.H.S
-TheUnknownScientist