12.3k views
4 votes
Two quadratic functions are given. ()=−2−2+6 ()=22+5+3 Identify all values of x, to the nearest tenth, for which f (x) = g(x). A. –2.7 B. –1.8 C. –0.6 D. 0.4 E. 4.1 F. 5.1 G. 7.0

User Lenroy
by
3.2k points

1 Answer

3 votes

Answer:


(a)\ x = 0.4\ or\ (d)\ x = -2.7

Explanation:

Given


f(x) = -x^2 - 2x +6


g(x) = 2x^2 + 5x + 3

Required

Find x if
f(x) = g(x)

The above implies that:


-x^2 -2x +6 = 2x^2 + 5x +3

Collect like terms


2x^2 + x^2 + 5x + 2x + 3 - 6 = 0


3x^2 + 7x - 3 = 0

Using quadratic formula, we have;


x = (-b \± √(b^2 - 4ac))/(2a)

Where


a=3; b=7; c=-3


x = (-7 \± √(7^2 - 4*3*-3))/(2*3)


x = (-7 \± √(49+ 36))/(6)


x = (-7 \± √(85))/(6)


x = (-7 \± 9.22)/(6)

Split


x = (-7 + 9.22)/(6)\ or\ x = (-7 - 9.22)/(6)


x = (2.22)/(6)\ or\ x = (-16.22)/(6)


x = 0.4\ or\ x = -2.7 --- approximated

User Badri
by
3.0k points