39.2k views
5 votes
Question 2 (2 points)

Find the indicated limit, if it exists. (2 points)

1) 0
2) 8
3) 3
4) The limit does not exist.

Question 2 (2 points) Find the indicated limit, if it exists. (2 points) 1) 0 2) 8 3) 3 4) The-example-1

1 Answer

3 votes

Answer:

4) The limit does not exist.

General Formulas and Concepts:

Calculus

Limits

  • Right-Side Limit:
    \displaystyle \lim_(x \to c^+) f(x)
  • Left-Side Limit:
    \displaystyle \lim_(x \to c^-) f(x)

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_(x \to c) x = c

Explanation:

*Note:

For a limit to exist, the right-side and left-side limits must be equal to each other.

Step 1: Define

Identify


\displaystyle f(x) = \left\{\begin{array}{ccc}5 - x ,\ x < 5\\8 ,\ x = 5\\x + 3 ,\ x > 5\end{array}

Step 2: Find Left-Side Limit

  1. Substitute in function [Left-Side Limit]:
    \displaystyle \lim_(x \to 5^-) 5 - x
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 5^-) 5 - x = 5- 5 = 0

Step 2: Find Left-Side Limit

  1. Substitute in function [Right-Side Limit]:
    \displaystyle \lim_(x \to 5^+) x + 3
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 5^+) x + 3 = 5 + 3 = 8

∴ since
\displaystyle \lim_(x \to c^+) f(x) \\eq \lim_(x \to c^-) f(x) ,
\displaystyle \lim_(x \to 5) f(x) = \text{DNE}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

User Jengfad
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories