Answer:
4) The limit does not exist.
General Formulas and Concepts:
Calculus
Limits
- Right-Side Limit:

- Left-Side Limit:

Limit Rule [Variable Direct Substitution]:

Explanation:
*Note:
For a limit to exist, the right-side and left-side limits must be equal to each other.
Step 1: Define
Identify

Step 2: Find Left-Side Limit
- Substitute in function [Left-Side Limit]:

- Evaluate limit [Limit Rule - Variable Direct Substitution]:

Step 2: Find Left-Side Limit
- Substitute in function [Right-Side Limit]:

- Evaluate limit [Limit Rule - Variable Direct Substitution]:

∴ since
,

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits