39.2k views
5 votes
Question 2 (2 points)

Find the indicated limit, if it exists. (2 points)

1) 0
2) 8
3) 3
4) The limit does not exist.

Question 2 (2 points) Find the indicated limit, if it exists. (2 points) 1) 0 2) 8 3) 3 4) The-example-1

1 Answer

3 votes

Answer:

4) The limit does not exist.

General Formulas and Concepts:

Calculus

Limits

  • Right-Side Limit:
    \displaystyle \lim_(x \to c^+) f(x)
  • Left-Side Limit:
    \displaystyle \lim_(x \to c^-) f(x)

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_(x \to c) x = c

Explanation:

*Note:

For a limit to exist, the right-side and left-side limits must be equal to each other.

Step 1: Define

Identify


\displaystyle f(x) = \left\{\begin{array}{ccc}5 - x ,\ x < 5\\8 ,\ x = 5\\x + 3 ,\ x > 5\end{array}

Step 2: Find Left-Side Limit

  1. Substitute in function [Left-Side Limit]:
    \displaystyle \lim_(x \to 5^-) 5 - x
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 5^-) 5 - x = 5- 5 = 0

Step 2: Find Left-Side Limit

  1. Substitute in function [Right-Side Limit]:
    \displaystyle \lim_(x \to 5^+) x + 3
  2. Evaluate limit [Limit Rule - Variable Direct Substitution]:
    \displaystyle \lim_(x \to 5^+) x + 3 = 5 + 3 = 8

∴ since
\displaystyle \lim_(x \to c^+) f(x) \\eq \lim_(x \to c^-) f(x) ,
\displaystyle \lim_(x \to 5) f(x) = \text{DNE}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

User Jengfad
by
4.8k points