Answer:
fog(1) = 25
g(h(-2)) = 10
Step-by-step explanation:
Given the following functions
f(x) =x^2,
g(x) =5x,
h(x)=x+4
We are to find;
i) fog(1)
fog = f(g(x))
f(g(x)) = f(5x)
f(5x) = (5x)²
f(5x) = 25x²
f(g(x)) = 25x²
f(g(1)) = 25(1)²
f(g(1)) = 25
Hence fog(1) is 25
ii) g(h(x))
= g(x+4)
g(x+4) = 5(x+4)
g(x+4) = 5x+20
g(h(x)) = 5x + 20
g(h(-2)) = 5(-2)+ 20
g(h(-2)) = -10 + 20
g(h(-2)) = 10