Answer:
We have that
if
, which does not respect the condition for the existence of an inverse function, which means that
does not exist for this function.
Explanation:
Existence of an inverse function:
An inverse function will exist if: f(a) = f(b) only if a = b.
In this question:
![f(a) = -(1)/(7)√(16 - a^2)](https://img.qammunity.org/2022/formulas/mathematics/college/9xp8nwpkjgi9au2f7oon8a5kxu3ylj0fxk.png)
![f(b) = -(1)/(7)√(16 - b^2)](https://img.qammunity.org/2022/formulas/mathematics/college/rzprjl8cpzep8utdf5bm0bgmr7jiwdo7no.png)
![-(1)/(7)√(16 - a^2) =-(1)/(7)√(16 - b^2)](https://img.qammunity.org/2022/formulas/mathematics/college/wo3dt825tn937lvrjcz55rwkbmx2dvzjsz.png)
![√(16 - a^2) = √(16 - b^2)](https://img.qammunity.org/2022/formulas/mathematics/college/ed892a1vh727019xwzh1gozy3t8n0mxq8o.png)
![(√(16 - a^2))^2 = (√(16 - b^2))^2](https://img.qammunity.org/2022/formulas/mathematics/college/65hf3rhdjsp2th7k1imb8q25tgms5qmyd2.png)
![16 - a^2 = 16 - b^2](https://img.qammunity.org/2022/formulas/mathematics/college/htsynva72xvwg12vuqagkj894sadcfcje2.png)
![a^2 = b^2](https://img.qammunity.org/2022/formulas/mathematics/college/iaiz8yuj8px5t8ve8selsuc4iujxipt2br.png)
![a = \pm b](https://img.qammunity.org/2022/formulas/mathematics/college/1u6es97rpf9mzti4cef7tjtwuglwgwrjar.png)
We have that
if
, which does not respect the condition for the existence of an inverse function, which means that
does not exist for this function.