91.6k views
5 votes
Determine the area
of a circle with a radius of 8.

2 Answers

7 votes

Explanation:

Radius of the circle=8

We know that


\boxed{\sf Area=\pi r^2}


\sf \rightharpoondown \: area = (22)/(7) * {8}^(2) \\ \sf \rightharpoondown \: (22)/(7) * 64 \\ \sf \rightharpoondown \: (22 * 64)/(7) \\ \sf \rightharpoondown \: (1408)/(7) \\ \sf \rightharpoondown \: 201.1units {}^(2)


\sf More\:to\:know\begin {cases}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length* Breadth \\\\ \star\sf Triangle=(1)/(2)* Breadth* Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\frac {1}{2}* d_1* d_2 \\\\ \star\sf Rhombus =\:\frac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth* Height\\\\ \star\sf Trapezium =\frac {1}{2}(a+b)* Height \\ \\ \star\sf Equilateral\:Triangle=\frac {√(3)}{4}(side)^2\end {cases}

User Ivan Pirus
by
5.4k points
2 votes
Answer

A≈201.06


Radius 8
User Askar Kalykov
by
5.2k points