510,476 views
13 votes
13 votes
Find
\sf (dy)/(dx)


\sf y=(x)/(sin^nx)

n is an integer .



Note:-

Solve with proper explanation ,

Pls don't answer if you are not sure


Spams, irrelevant, wrong answers will be deleted.​

User Yazz
by
2.8k points

2 Answers

19 votes
19 votes

Hey there mate!

Please check the attached answer of picture for explanation.


Have \: a \: great \: day! \: :)

Find \sf (dy)/(dx) \sf y=(x)/(sin^nx) n is an integer . Note:- Solve with proper explanation-example-1
User Richard Durr
by
3.4k points
18 votes
18 votes

Answer:


\sf (dy)/(dx) =\sf \bold{ -nx\cot \left(x\right)\csc ^n\left(x\right) + \csc ^n\left(x\right)}

solve:


\sf y = (d)/(dx)\left((x)/(sin^nx)\right)


\hookrightarrow \sf \bold{ \sf (dy)/(dx) =\sf (d)/(dx)\left((x)/(sin^nx)\right)}

// apply rule:
\sf (1)/(sinx) = csc(x) //


\hookrightarrow \sf \bold{ \sf (dy)/(dx) =\sf (d)/(dx)\left(x\csc ^n\left(x\right)\right)}

// apply product rule:
\sf xsinx = x * (d)/(dx) (sinx) + sin(x) *(d)/(dx) (x) //


\hookrightarrow \sf \bold{\sf x *(d)/(dx) (csc^n (x))+ csc^n (x) * (d)/(dx) (x)}

Lets look into deeper differentiation separately:


\sf we \ must \ know \ that \ (d)/(dx) (x)} = 1

now, for
\sf (d)/(dx) (csc^n (x)) - apply chain rule


\rightarrow \sf n\left(\csc \left(x\right)\right)^(n-1)(d)/(dx)\left(\csc \left(x\right)\right)


\sf \bold \ * we \ must \ know \ that \ (d)/(dx) (csc(x)) = -cot(x) csc(x)


\sf \rightarrow n\left(\csc \left(x\right)\right)^(n-1)\left(-\cot \left(x\right)\csc \left(x\right)\right)


\rightarrow \sf -n\cot \left(x\right)\csc ^(n-1+1)\left(x\right)


\rightarrow \sf -n\cot \left(x\right)\csc ^n\left(x\right)

Now finish:


\hookrightarrow \sf x * -n\cot \left(x\right)\csc ^n\left(x\right) + \csc ^n\left(x\right) *1


\hookrightarrow \sf \bold{ -nx\cot \left(x\right)\csc ^n\left(x\right) + \csc ^n\left(x\right)}

User AnotherOne
by
3.4k points