173k views
22 votes
Hello.

Please help with this maths problem:

\mathrm{\displaystyle\frac{\sqrt{64xy^(5) } }{√(8x) } }
Due today.
No spam.
Thank you in advance. :)

User Jerry Sha
by
2.6k points

2 Answers

0 votes


\\ \rm\rightarrowtail (√(64xy^5))/(√(8x))


\\ \rm\rightarrowtail (√(8^2xy^5))/(√(8x))

Follow the rule


\boxed{\Large{\sf (a^m)/(a^n)=a^(m-n)}}


\\ \rm\rightarrowtail \sqrt{8^(2-1)x^(1-1)y^5}


\\ \rm\rightarrowtail √(8^1x^0y^5)

  • a^0=1
  • a^1=a


\\ \rm\rightarrowtail √(8y^5)


\\ \rm\rightarrowtail √(2^2(2)y^2y^3)


\\ \rm\rightarrowtail √(2^2y(y)(y)(y))


\\ \rm\rightarrowtail 2y^2√(2y)

User Oldek
by
3.8k points
12 votes

Answer:


\large{\boxed{\sf 2y^2√(2y)}}

Explanation:

Here the given expression to us is ;


\sf\qquad\longrightarrow (√(64xy^5))/(√(8x))

Recall that ,


\sf\qquad\longrightarrow (√(x))/(√(y))=\sqrt{(x)/(y)}

On using this , we have ;


\sf\qquad\longrightarrow \sqrt{\frac{\cancel{64}\cancel{x}y^5}{\cancel{8x}}}

Simplify ,


\sf\qquad\longrightarrow √( 8 y^5)

The prime factorisation of 8 is 2³ . So ;


\sf\qquad\longrightarrow √( (2^3)(y^5)) =√((2^2)(2)(y^2)(y^2)(y))

Simplify the square root ,


\sf\qquad\longrightarrow \pink{ 2y^2√(2y)}

Hence the required answer is 2y²{2y} .

User Jacqui Gurto
by
3.6k points