205k views
5 votes
Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the x-axis. Verify your results using the integration capabilities of a graphing utility.y = cos 2xy = 0x = 0x = pi/4

User Terry Shi
by
4.1k points

1 Answer

3 votes

Answer:


V = (\pi^2)/(8)


V = 1.23245

Explanation:

Given


y = \cos 2x


y = 0; x = 0; x = (\pi)/(4)

Required

Determine the volume of the solid generated

Using the disk method approach, we have:


V = \pi \int\limits^a_b {R(x)^2} \, dx

Where


y = R(x) = \cos 2x


a = (\pi)/(4); b =0

So:


V = \pi \int\limits^a_b {R(x)^2} \, dx

Where


y = R(x) = \cos 2x


a = (\pi)/(4); b =0

So:


V = \pi \int\limits^a_b {R(x)^2} \, dx


V = \pi \int\limits^{(\pi)/(4)}_0 {(\cos 2x)^2} \, dx


V = \pi \int\limits^{(\pi)/(4)}_0 {\cos^2 (2x)} \, dx

Apply the following half angle trigonometry identity;


\cos^2(x) = (1)/(2)[1 + \cos(2x)]

So, we have:


\cos^2(2x) = (1)/(2)[1 + \cos(2*2x)]


\cos^2(2x) = (1)/(2)[1 + \cos(4x)]

Open bracket


\cos^2(2x) = (1)/(2) + (1)/(2)\cos(4x)

So, we have:


V = \pi \int\limits^{(\pi)/(4)}_0 {\cos^2 (2x)} \, dx


V = \pi \int\limits^{(\pi)/(4)}_0 {[(1)/(2) + (1)/(2)\cos(4x)]} \, dx

Integrate


V = \pi [(x)/(2) + (1)/(8)\sin(4x)]\limits^{(\pi)/(4)}_0

Expand


V = \pi ([((\pi)/(4))/(2) + (1)/(8)\sin(4*(\pi)/(4))] - [(0)/(2) + (1)/(8)\sin(4*0)])


V = \pi ([((\pi)/(4))/(2) + (1)/(8)\sin(4*(\pi)/(4))] - [0 + 0])


V = \pi ([((\pi)/(4))/(2) + (1)/(8)\sin(4*(\pi)/(4))])


V = \pi ([{(\pi)/(8) + (1)/(8)\sin(\pi)])


\sin \pi = 0

So:


V = \pi ([{(\pi)/(8) + (1)/(8)*0])


V = \pi *[{(\pi)/(8)]


V = (\pi^2)/(8)

or


V = (3.14^2)/(8)


V = 1.23245

User James Z
by
3.4k points