Answer:


Explanation:
Given


Required
Determine the volume of the solid generated
Using the disk method approach, we have:

Where


So:

Where
So:
Apply the following half angle trigonometry identity;
![\cos^2(x) = (1)/(2)[1 + \cos(2x)]](https://img.qammunity.org/2022/formulas/mathematics/college/70kjjo3t19avyby6d3cvw0x6pru1wfakt0.png)
So, we have:
![\cos^2(2x) = (1)/(2)[1 + \cos(2*2x)]](https://img.qammunity.org/2022/formulas/mathematics/college/1b4knzzyqsi26m5h2sj5jl1nu4ebffi4tq.png)
Open bracket

So, we have:
![V = \pi \int\limits^{(\pi)/(4)}_0 {[(1)/(2) + (1)/(2)\cos(4x)]} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/60jan7yl73syep0hh896w1i6awfrsgzcgl.png)
Integrate
![V = \pi [(x)/(2) + (1)/(8)\sin(4x)]\limits^{(\pi)/(4)}_0](https://img.qammunity.org/2022/formulas/mathematics/college/b049t2da4841hur3xt8galu8n70mwc66sj.png)
Expand
![V = \pi ([((\pi)/(4))/(2) + (1)/(8)\sin(4*(\pi)/(4))] - [(0)/(2) + (1)/(8)\sin(4*0)])](https://img.qammunity.org/2022/formulas/mathematics/college/5w6mxadye7nz2i2e3hiybpzy8ie9uz9f14.png)
So:
or
