Answer:
The functions are:
f(x) = $14.75*x + $2
s(x) = $12.25*x + $17
Both iSpice and Spice Magic charge $90.50 for 6 pounds of paprika.
Explanation:
A linear equation has the general shape:
y = a*x + b
Where a is the slope and b is the y-intercept.
If we know that the function passes through the points: (x₁, y₁) and (x₂, y₂) then the slope is:
a = (y₂ - y₁)/(x₂ - x₁)
Ok, knowing this, let's look at the first table, we need to work with only two points, so let's use the first one (1, $16.75) and the second one (2, $31.50)
Then the slope of the equation is:
a = ($31.50 - $16.75)/(2 - 1) = $14.75
Then the equation is something like:
y = f(x) = $14.75*x + b
To find the value of b, we can use one of the two points. For example, the point (1, $16.75) means that when x = 1, we must have y = $16.75
Replacing these values in the equation we get:
$16.75 = f(1) = $14.75*1 + b
$16.75 - $14.75 = b = $2
Then the function f(x) is:
f(x) = $14.75*x + $2
Now let's go to the other function, again we can choose two points, let's use the first one (1, $29.25) and the third one (3, $53,75).
Then the slope is:
a = ($53.75 - $29.25)/(3 - 1) = $12.25
Then the equation is something like:
y = s(x) = $12.25*x + b
To find the value of b we do the same as before, if we use the first point (1, $29.25) we get:
$29.25 = s(1) = $12.25*1 + b
$29.25 - $12.25 = b = $17
Then this equation is:
y = s(x) = $12.25*x + $17
The two equations are:
f(x) = $14.75*x + $2
s(x) = $12.25*x + $17
b) now we want to find the value x such that the price is the same in both cases, then we need to solve:
f(x) = g(x)
$14.75*x + $2 = $12.25*x + $17
$14.75*x - $12.25*x = $17 - $2
$2.5*x = $15
x = $15/$2.5 = 6
This means that for 6 pounds of paprika the price is the same on both companies, and the price is:
f(6) = g(6) = $14.75*6 + $2 = $90.50