Answer:
Kindly check explanation
Explanation:
Given The samples:
X = 10.2, 9.7, 10.1, 10.3, 10.1, 10.3, 10.1, 9.8, 9.9, 10.4, 10.3, 10.5,11.2,11.3, 9.8
Using a calculator ;
Sample mean, xbar = 10.27
Sample standard deviation, s = 0.462
H0 : μ = 15
H1 : μ < 15
The test statistic :
(xbar - μ) ÷ (s/sqrt(n))
(10.27 - 15) / (0.462/sqrt(15))
-4.73 / 0.1192878
= - 39.65
Using the Pvalue form Tscore, calculator, df = 14
Pvalue = 0.000001,
Since, Pvalue < α ; then we reject the Null
Confidence interval :
Xbar ± Margin of error
Margin of Error = Tcritical * s/√n
TCritical at 95%, df = 14
Margin of Error = 2.145 * 0.462/sqrt(15) = 0.2559
Lower boundary :
10.27 - 0.2559 = 10.0141
Upper boundary :
10.27 + 0.2559 = 10.5259
(10.0141 ; 10.5259)
The true population means should reside within the interval