Answer:
The smaller number is 23
Explanation:
Given
Let the odd numbers be x and y [x, being the smallest]
Such that
![y = x + 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/i1x8jz9hxhee5mjn2b4m06vl3jwxdzutk1.png)
and
![x * y = 575](https://img.qammunity.org/2022/formulas/mathematics/college/pia712hw10jip4iejl3wi74gkeqck4gy6j.png)
Required
Find x
Substitute
in
![x * y = 575](https://img.qammunity.org/2022/formulas/mathematics/college/pia712hw10jip4iejl3wi74gkeqck4gy6j.png)
![x * [x + 2] = 575](https://img.qammunity.org/2022/formulas/mathematics/college/svauepr1mgqwp6xpnjtvrvqosb8k2xoafb.png)
Open bracket
![x^2+ 2x = 575](https://img.qammunity.org/2022/formulas/mathematics/college/zr78csl08z76v1bugoqza0ubjnk5yv0mcq.png)
Equate to 0
![x^2+ 2x - 575 =0](https://img.qammunity.org/2022/formulas/mathematics/college/zv7nsuhwamqxgxckf4ivlpvej7cym8m5up.png)
Expand
![x^2+ 25x -23x- 575 =0](https://img.qammunity.org/2022/formulas/mathematics/college/lzpeuz6386l6nawlgpfe3awo1qpxclfwwa.png)
Factorize
![x(x+ 25) -23(x+ 25) =0](https://img.qammunity.org/2022/formulas/mathematics/college/64dg2nkt6btwwz9260uqpysxj1e4zte6h1.png)
Factor out x + 25
![(x-23) (x+ 25) =0](https://img.qammunity.org/2022/formulas/mathematics/college/tac9mrcpkst2w0x5pt7xzv60uzi5i987vb.png)
Solve
or
![x - 25 =0](https://img.qammunity.org/2022/formulas/mathematics/college/gf0fuq22e5gu7wqj851ekrf5zzg8tgwidl.png)
or
![x = -25](https://img.qammunity.org/2022/formulas/mathematics/college/hudo4sa7hf7ebmucjyhrgcum043lg5btwp.png)
But x can't be negative.
So:
![x= 23](https://img.qammunity.org/2022/formulas/mathematics/college/1k68bjixi5jcymeyn2cwv36d8xrdp30ygi.png)