Answer:
the force conveyed by the fibers is 947.93 lb-f
Step-by-step explanation:
Given the data in the question;
V_f = 80% = 0.8
V_m = 1 - V_f = 1 - 0.8 = 0.2
Now,
length of fibre L_f = length of Nylon L_n
V_f = A_f × L_f = 0.8
V_m = A_n × L_n = 0.2
so
V_f/V_m = A_f/A_n = 0.8/0.2
A_f/A_n = 4
now, the strains in fibre is equal to strains in nylon
(P/AE)f = (P/AE)n
P_f/A_fE_f = P_n/A_nE_n
P_f = (A_f/A_n)(E_f/E_n)(P_n)
P_f = ( 4 )( 131 / 2.8 )(Pn)
P_f = 187.14Pn
and P_n = Pf / 187.14
Hence
given that P_total = 953 lb-f
P_f + P_n = 953
P_f + ( P_f / 187.14 ) = 953
P_f( 1 + ( 1 / 187.14 ) ) = 953
P_f( 1.00534359 = 953
P_f = 953 / 1.00534359
P_f = 947.93 lb-f
Therefore, the force conveyed by the fibers is 947.93 lb-f