100k views
5 votes
The expression cube root of 54x^8y^12 can be written in simplest radical form as

User Chinmay T
by
4.6k points

1 Answer

2 votes

Answer:

The simplest radical form of the cubic root is
3x^2y^4\sqrt[3]{2x}

Explanation:

Cube root of 54x^8y^12

That is:


\sqrt[3]{54x^8y^12}

Can be simplified as:


\sqrt[3]{54x^8y^12} = \sqrt[3]{54}\sqrt[3]{x^8}\sqrt[3]{y^12}

We find each separate simplification, and multiply them:

Cubic root of 54:


54 = 2*3^3

So


\sqrt[3]{54} = \sqrt[3]{2*3^3} = 3\sqrt[3]{2}

Cubic root of x^8


\sqrt[3]{x^8} = \sqrt[3]{x^6*x^2} = x^2\sqrt[3]{x^2}

Cubic root of y^12


\sqrt[3]{y^(12)} = y^4

Multiplying all these terms:


\sqrt[3]{54}\sqrt[3]{x^8}\sqrt[3]{y^12} = 3\sqrt[3]{2}(x^2\sqrt[3]{x^2})(y^4) = 3x^2y^4\sqrt[3]{2x}

The simplest radical form of the cubic root is
3x^2y^4\sqrt[3]{2x}

User Brand
by
4.1k points