Answer:
95% of the confidence interval for q is
(0.05809 , 0.1183)
Explanation:
Step:1
Given that the random sample of 340 electronic components manufactured by a certain process is tested, and 30 are found to be defective.
sample proportion
![q^(-) = (x)/(n) = (30)/(340) = 0.0882](https://img.qammunity.org/2022/formulas/mathematics/college/u01ap45szap3g5aceqbwjusgmv2jk77kul.png)
Step:2
95% of the confidence interval is determined by
![(q - Z_(0.05) \sqrt{(pq)/(n) } , q + Z_(0.05) \sqrt{(pq)/(n) } )](https://img.qammunity.org/2022/formulas/mathematics/college/5vfk3cz79shaenmftp4y9b45t6qf1sqv02.png)
![((0.0804 -1.96 \sqrt{(0.0804 X0.9118)/(340) } ,0.0804 +1.96 \sqrt{(0.0804 X0.9118)/(340))](https://img.qammunity.org/2022/formulas/mathematics/college/lyhm15qq3m6ntif27aa5upmrdkilybvf4a.png)
![( 0.0882- 1.96 √(0.000236) , 0.0882 + 1.96 √(0.000236) )](https://img.qammunity.org/2022/formulas/mathematics/college/whpbikmbsuqj4sriucku1yt53q39yphg6i.png)
(0.0882 - 0.03011 , 0.0882+0.03011)
( 0.05809 , 0.1183)
Final answer:-
95% of the confidence interval for q is
(0.05809 , 0.1183)