Answer:
Electric force is 1.23 x 10³⁶ times stronger than gravitational force.
Step-by-step explanation:
First, we will calculate the gravitational force using Newton's Law:
![F_G = (Gm^2)/(r^2)\\\\](https://img.qammunity.org/2022/formulas/physics/college/4117jnlki8dzovlzbhga2c8184qppqewb9.png)
where,
F_G = Gravitational Force = ?
G = Gravitational Constant = 6.67 x 10⁻¹¹ Nm²/kg²
m = mass of proton = 1.67 x 10⁻²⁷ kg
r = distance between protons
Therefore,
![F_G = ((6.67\ x\ 10^(-11)\ Nm^2/kg^2)(1.67\ x\ 10^(-27)\ kg)^2)/(r^2)\\\\F_G = (1.86\ x\ 10^(-64)\ Nm^2)/(r^2)\\\\](https://img.qammunity.org/2022/formulas/physics/college/7c3vylv577rdajk1e7ctjqcrye91j2wfjn.png)
Now, we will calculate the electrostatic force using Colomb's Law:
![F_E = (kq^2)/(r^2)\\\\](https://img.qammunity.org/2022/formulas/physics/college/np72eoh4im0sfp3qno6fkiqntosjkalwx6.png)
where,
F_E = Electrostatic Force = ?
k = Colomb's Constant = 9 x 10⁹ Nm²/C²
q = charge of proton = 1.6 x 10⁻¹⁹ C
r = distance between protons
Therefore,
![F_E = ((9\ x\ 10^(9)\ Nm^2/kg^2)(1.6\ x\ 10^(-19)\ C)^2)/(r^2)\\\\F_E = (2.3\ x\ 10^(-28)\ Nm^2)/(r^2)\\\\](https://img.qammunity.org/2022/formulas/physics/college/be4foi9qbtwkj3rkg7uzo8k93v5idx9zqw.png)
Dividing both forces:
![(F_E)/(F_G) = (2.3\ x\ 10^(-28))/(1.86\ x\ 10^(-64))](https://img.qammunity.org/2022/formulas/physics/college/cl1nd4yz1j865v3sme90uiwobx8hrrrg7w.png)
F_E = 1.23 x 10³⁶ F_G
Therefore, electric force is 1.23 x 10³⁶ times stronger than gravitational force.