96.6k views
2 votes
Find the derivative of f(x) =( -7/x) at x = -3.

pls help !!

User DFW
by
5.1k points

1 Answer

1 vote

Answer:


\displaystyle f'(-3) = (7)/(9)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Calculus

Derivatives

Derivative Notation

Derivative of a constant is a 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:
\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))

Explanation:

Step 1: Define


\displaystyle f(x) = (-7)/(x)


\displaystyle x = -3

Step 2: Differentiate

  1. Quotient Rule:
    \displaystyle f'(x) = ((d)/(dx)[7]x - (d)/(dx)[x](-7))/(x^2)
  2. Basic Power Rule:
    \displaystyle f'(x) = ((0)x - x^(1 - 1)(-7))/(x^2)
  3. Simplify:
    \displaystyle f'(x) = ((0)x - x^0(-7))/(x^2)
  4. Simplify:
    \displaystyle f'(x) = ((0)x - 1(-7))/(x^2)
  5. Multiply:
    \displaystyle f'(x) = (0 + 7)/(x^2)
  6. Add:
    \displaystyle f'(x) = (7)/(x^2)

Step 3: Solve

  1. Substitute in x [Derivative]:
    \displaystyle f'(-3) = (7)/((-3)^2)
  2. Evaluate exponents:
    \displaystyle f'(-3) = (7)/(9)

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e