Answer:
![1 \to 22 \to 0.176](https://img.qammunity.org/2022/formulas/mathematics/college/a4z653ntfrazub9pbeas3qbd5n8z4xq8q1.png)
![2 \to 13 \to 0.104](https://img.qammunity.org/2022/formulas/mathematics/college/4a6ypadvia1o32kgo7rrmmiijvmkk0fv8i.png)
![3 \to 18 \to 0.144](https://img.qammunity.org/2022/formulas/mathematics/college/xwwb2uq5yhz4x91nz87s8jjgeefnzhfutm.png)
![4 \to 29 \to 0.232](https://img.qammunity.org/2022/formulas/mathematics/college/1qavc50jdmgrnxgfrr8vgs3lgxdks3bhg3.png)
![5 \to 37 \to 0.296](https://img.qammunity.org/2022/formulas/mathematics/college/uly06ulgjyqgxdq5i7r9xhsoxr3w3lydd6.png)
![6 \to 6 \to 0.048](https://img.qammunity.org/2022/formulas/mathematics/college/guhm4f1q4kfrxwyj9jwmkkeqrrvrx9f3yi.png)
Explanation:
Given
![n = 125](https://img.qammunity.org/2022/formulas/mathematics/college/r99k3yge1yot9fxplszcy26zmf8wedx87c.png)
See attachment for proper table
Required
Complete the table
Experimental probability is calculated as:
![Pr = (Frequency)/(n)](https://img.qammunity.org/2022/formulas/mathematics/college/huae7yy4v51w558x9u50apev87mi17hpbg.png)
We use the above formula when the frequency is known.
For result of roll 2, 4 and 6
The frequencies are 13, 29 and 6, respectively
So, we have:
![Pr(2) = (13)/(125) = 0.104](https://img.qammunity.org/2022/formulas/mathematics/college/nvi1nxxlrcdhl8izsu2wexteae745e6ji3.png)
![Pr(4) = (29)/(125) = 0.232](https://img.qammunity.org/2022/formulas/mathematics/college/c8l2poxojt912qb9xcz9fijemu5mhenoez.png)
![Pr(6) = (6)/(125) = 0.048](https://img.qammunity.org/2022/formulas/mathematics/college/hkodr9ohbx37dtcpn5z2bcuq9tsd808n4g.png)
When the frequency is to be calculated, we use:
![Pr = (Frequency)/(n)](https://img.qammunity.org/2022/formulas/mathematics/college/huae7yy4v51w558x9u50apev87mi17hpbg.png)
![Frequency = n * Pr](https://img.qammunity.org/2022/formulas/mathematics/college/hfqg1u2xqiq5lo1sd38uupwcwtpo99kwnu.png)
For result of roll 3 and 5
The probabilities are 0.144 and 0.296, respectively
So, we have:
![Frequency(3) = 125 * 0.144 = 18](https://img.qammunity.org/2022/formulas/mathematics/college/4fdvzzfxtkucm4c3vu8bbmhe9m3u2etgz5.png)
![Frequency(5) = 125 * 0.296 = 37](https://img.qammunity.org/2022/formulas/mathematics/college/8xo22juhuft2mseopa12r4syi8ddio1m8b.png)
For roll of 1 where the frequency and the probability are not known, we use:
![Total \ Frequency = 125](https://img.qammunity.org/2022/formulas/mathematics/college/2vwwt1jiz8084vfwi8cnu3nj0xrkqfaorh.png)
So:
Frequency(1) added to others must equal 125
This gives:
![Frequency(1) + 13 + 18 + 29 + 37 + 6 = 125](https://img.qammunity.org/2022/formulas/mathematics/college/dk88m2kssv8gpo2zt1b9byhx4qjjoz34s0.png)
![Frequency(1) + 103 = 125](https://img.qammunity.org/2022/formulas/mathematics/college/u3k97q0zuu6ieft6fp5dyvmcscwkv4ksxk.png)
Collect like terms
![Frequency(1) =- 103 + 125](https://img.qammunity.org/2022/formulas/mathematics/college/m7kn081yln3sz6wnghr2v8mrn3p33x4oss.png)
![Frequency(1) =22](https://img.qammunity.org/2022/formulas/mathematics/college/lyuwl68m6iy4s0gw4dzl74zesupnb9usdm.png)
The probability is then calculated as:
![Pr(1) = (22)/(125)](https://img.qammunity.org/2022/formulas/mathematics/college/mwd8dbg0e9hm11chjhe48wxfxxz3cp2fqp.png)
![Pr(1) = 0.176](https://img.qammunity.org/2022/formulas/mathematics/college/2erxcv2uvts21rnd83s7l26vx1kzvttc7g.png)
So, the complete table is:
![1 \to 22 \to 0.176](https://img.qammunity.org/2022/formulas/mathematics/college/a4z653ntfrazub9pbeas3qbd5n8z4xq8q1.png)
![2 \to 13 \to 0.104](https://img.qammunity.org/2022/formulas/mathematics/college/4a6ypadvia1o32kgo7rrmmiijvmkk0fv8i.png)
![3 \to 18 \to 0.144](https://img.qammunity.org/2022/formulas/mathematics/college/xwwb2uq5yhz4x91nz87s8jjgeefnzhfutm.png)
![4 \to 29 \to 0.232](https://img.qammunity.org/2022/formulas/mathematics/college/1qavc50jdmgrnxgfrr8vgs3lgxdks3bhg3.png)
![5 \to 37 \to 0.296](https://img.qammunity.org/2022/formulas/mathematics/college/uly06ulgjyqgxdq5i7r9xhsoxr3w3lydd6.png)
![6 \to 6 \to 0.048](https://img.qammunity.org/2022/formulas/mathematics/college/guhm4f1q4kfrxwyj9jwmkkeqrrvrx9f3yi.png)