102k views
4 votes
Find the f^-1(x) and it’s domain

Find the f^-1(x) and it’s domain-example-1
User Ferrybig
by
4.6k points

1 Answer

4 votes

Answer:


f^(-1)(x) = (x + 8)^2


x \ge -8

Explanation:

Given


f(x) = \sqrt x - 8

Solving (a):
f^(-1)(x)

We have:


f(x) = \sqrt x - 8

Express f(x) as y


y = \sqrt x - 8

Swap x and y


x = \sqrt y - 8

Add 8 to
both\ sides


x + 8 = \sqrt y - 8 + 8


x + 8 = \sqrt y

Square both sides


(x + 8)^2 = y

Rewrite as:


y = (x + 8)^2

Express y as:
f^(-1)(x)


f^(-1)(x) = (x + 8)^2

To determine the domain, we have:

The original function is
f(x) = \sqrt x - 8

The range of this is:
f(x) \ge -8

The
domain of the
inverse function is the
range of the
original function.

Hence, the domain is:


x \ge -8

User Pere
by
4.1k points