Answer:
A = 36.8°
B = 23.2°
a = 7.6
Explanation:
Given:
C = 120°
b = 5
c = 11
Required:
Find A, B, and a.
Solution:
✔️To find B, apply the Law of Sines
![(sin(B))/(b) = (sin(C))/(c)](https://img.qammunity.org/2022/formulas/mathematics/college/ljvpphxh002lohchgawnt23ep2tqre931e.png)
Plug in the values
![(sin(B))/(5) = (sin(120))/(11)](https://img.qammunity.org/2022/formulas/mathematics/college/28jt455ouv5patlchrysmgrhu41vlg2uqr.png)
Cross multiply
Sin(B)*11 = sin(120)*5
Divide both sides by 11
![sin(B) = (sin(120)*5)/(11)](https://img.qammunity.org/2022/formulas/mathematics/college/r8i1cf6igywjpv7fikjcddh5sts340rd93.png)
![sin(B) = (sin(120)*5)/(11)](https://img.qammunity.org/2022/formulas/mathematics/college/r8i1cf6igywjpv7fikjcddh5sts340rd93.png)
Sin(B) = 0.3936
B =
![sin^(-1)(0.3936)](https://img.qammunity.org/2022/formulas/mathematics/college/xeq3hnejorb19vz3xg81zwc7cg3qcixocr.png)
B = 23.1786882° ≈ 23.2° (nearest tenth)
✔️Find A:
A = 180° - (B + C) (sum of triangle)
A = 180° - (23.2° + 120°)
A = 36.8°
✔️To find a, apply the Law of sines:
![(sin(A))/(a) = (sin(B))/(b)](https://img.qammunity.org/2022/formulas/mathematics/college/j3xvuzri2c2axug39u0ukc3i5w8ux6nhlv.png)
Plug in the values
![(sin(36.8))/(a) = (sin(23.2))/(5)](https://img.qammunity.org/2022/formulas/mathematics/college/fy15odjt4asdrno9z0icrqmbj83ely4cty.png)
Cross multiply
a*sin(23.2) = 5*sin(36.8)
Divide both sides by sin(23.2)
![a = \frac{5*sin(36.8)}{sin(23.2)]()
a = 7.60294329 ≈ 7.6 (nearest tenth)