Answer:
(c)
Explanation:
Given
See attachment for A and B
Required
Compare A and B
First, we get the initial population of A and B.
The initial population is at when
![t =0](https://img.qammunity.org/2022/formulas/mathematics/high-school/rngjjgt8wmc5zvmauih3zr2gvpeo5o1t4l.png)
From the table of bacteria A, we have:
when
![t = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/lx3ip2zu3pkxpa4xz10h4293l429vmrzwm.png)
From the graph of bacteria B, we have:
when
![t = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/lx3ip2zu3pkxpa4xz10h4293l429vmrzwm.png)
Since the initial of bacteria B is less than that of bacteria A, then (a) is incorrect.
Next, calculate the slope of A and B i.e. the rate
Slope (m) is calculated as:
![m = (y_2 - y_1)/(t_2 - t_1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ftne4uvf5vji49u20tvecmk28tv2n21jwy.png)
Where
y = Number of bacteria
t = time
For bacteria A:
![(t_1,y_1) = (0,100)](https://img.qammunity.org/2022/formulas/mathematics/high-school/wf755bwmtoy96dot4fteeiu69gwzsphq7u.png)
![(t_2,y_2) = (2,140)](https://img.qammunity.org/2022/formulas/mathematics/high-school/w7hciyt8njn48wfc8ycujnbazpc53jggr8.png)
So, the slope is:
![m_A = (140 - 100)/(2 - 0)](https://img.qammunity.org/2022/formulas/mathematics/high-school/2v8y8cuqk9076agnl1vyturqs97tp7iar3.png)
![m_A = (40)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/dc7y9te5z4ifus7wjgy155hrzdzygh71jm.png)
![m_A = 20](https://img.qammunity.org/2022/formulas/mathematics/high-school/fg00wg47r12nt9d9f0ra4sa4cu8rphby8u.png)
For bacteria B:
![(t_1,y_1) = (0,75)](https://img.qammunity.org/2022/formulas/mathematics/high-school/f158198e4i3hc1hm06irk6rzq5j0j80qyg.png)
![(t_2,y_2) = (1,100)](https://img.qammunity.org/2022/formulas/mathematics/high-school/bqp97zih91laur72xewtekiflr6yta4f3o.png)
So, the slope is:
![m_B = (100- 75)/(1 - 0)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ueza5sc1d9ttusrt1p0vblje9in9w882t4.png)
![m_B = (25)/(1 )](https://img.qammunity.org/2022/formulas/mathematics/high-school/yv7f0h3r6mjoqcaigabfuczs3wbjs4gwhe.png)
![m_B = 25](https://img.qammunity.org/2022/formulas/mathematics/high-school/aik09f6jgftrq9604orjrjw7am8jeowki1.png)
Since
, then the rate of bacteria B is greater than that of bacteria A.
Hence, (d) cannot be true
Next, we determine the equation of both bacteria
This is calculated using:
![y = m(t - t_1) + y_1](https://img.qammunity.org/2022/formulas/mathematics/high-school/u1xx3khrf3fxa02wnng2m47pq8z8a1674n.png)
For bacteria A, we have:
![y = m_A(t - t_1) + y_1](https://img.qammunity.org/2022/formulas/mathematics/high-school/u2kocgw6cwtyq86wfc75schmhju082dstg.png)
Where:
![(t_1,y_1) = (0,100)](https://img.qammunity.org/2022/formulas/mathematics/high-school/wf755bwmtoy96dot4fteeiu69gwzsphq7u.png)
![m_A = 20](https://img.qammunity.org/2022/formulas/mathematics/high-school/fg00wg47r12nt9d9f0ra4sa4cu8rphby8u.png)
So:
![y = 20(t - 0) +100](https://img.qammunity.org/2022/formulas/mathematics/high-school/mn0sy0ltghvt0xx1s829gnu3nt3x5ti8j5.png)
![y = 20(t) +100](https://img.qammunity.org/2022/formulas/mathematics/high-school/ne049hjn84rt8i1yg3u2dnz2zuqk98se1w.png)
![y = 20t +100](https://img.qammunity.org/2022/formulas/mathematics/high-school/2ut8l3yzrbpb0ca7l53azaf552qd78jeft.png)
For bacteria B, we have:
![y = m_B(t - t_1) + y_1](https://img.qammunity.org/2022/formulas/mathematics/high-school/gfaqik5q62xz429g65l8vufhnr4ji7uc2h.png)
Where:
![(t_1,y_1) = (0,75)](https://img.qammunity.org/2022/formulas/mathematics/high-school/f158198e4i3hc1hm06irk6rzq5j0j80qyg.png)
![m_B = 25](https://img.qammunity.org/2022/formulas/mathematics/high-school/aik09f6jgftrq9604orjrjw7am8jeowki1.png)
So:
![y = 25(t - 0) + 75](https://img.qammunity.org/2022/formulas/mathematics/high-school/iwlhauhnr9v0snfzpu763m4a8hrmvzz9yq.png)
![y = 25(t) + 75](https://img.qammunity.org/2022/formulas/mathematics/high-school/kctwge8iei8fpl5ocz9xwtja093sf5hm8z.png)
![y = 25t + 75](https://img.qammunity.org/2022/formulas/mathematics/high-school/3e89493y3hy26i3zoqqu9ekglp7gdku1a8.png)
At 3 hours, the population of bacteria A is:
![y = 20t +100](https://img.qammunity.org/2022/formulas/mathematics/high-school/2ut8l3yzrbpb0ca7l53azaf552qd78jeft.png)
![y = 20* 3 + 100](https://img.qammunity.org/2022/formulas/mathematics/high-school/55wjkh7imk9r3rzbcqdjcceojwq2j4xm9q.png)
![y = 60 + 100](https://img.qammunity.org/2022/formulas/mathematics/high-school/2c79rhk3xggy6elu4e72jkpi1t7wslopbl.png)
![y = 160](https://img.qammunity.org/2022/formulas/mathematics/high-school/asm876n72ox8u46uotbz1o0ixelxw5kr9v.png)
At 3 hours, the population of bacteria B is:
![y = 25t + 75](https://img.qammunity.org/2022/formulas/mathematics/high-school/3e89493y3hy26i3zoqqu9ekglp7gdku1a8.png)
![y=25 * 3 + 75](https://img.qammunity.org/2022/formulas/mathematics/high-school/4rjbmrx9cc6ie0rso9pp29ozegjeqjjy46.png)
![y=75 + 75](https://img.qammunity.org/2022/formulas/mathematics/high-school/209s3njugcfk9t2g2n5ueiicuuqzqoz1bd.png)
![y=150](https://img.qammunity.org/2022/formulas/mathematics/high-school/5jkbnjtyn6womzl0rvv25ng1eifjbxn0sv.png)
After 3 hours, bacteria B is 150 while A is 160.
This implies that (c) is correct because the population of B is less than that of A, at 3 hour
Lastly, to check if they will ever have equal population or not, we simply equate both equations.
So, we have:
![y = y](https://img.qammunity.org/2022/formulas/mathematics/high-school/k9l04l5r33jzj816cmci4kbv0e25gz6tda.png)
![25t + 75 =20t + 100](https://img.qammunity.org/2022/formulas/mathematics/high-school/s2xuq63k7roz8w1npw6k30ihzhahyjcay1.png)
Collect like terms
![25t - 20t = 100 - 75](https://img.qammunity.org/2022/formulas/mathematics/high-school/5dirgubhf3uw06of1hmwtyummmgieu6gf5.png)
![5t = 25](https://img.qammunity.org/2022/formulas/mathematics/high-school/86wiziywq8bk3lo0wig00o30nefzyvgb0n.png)
Solve for t
![t = 25/5](https://img.qammunity.org/2022/formulas/mathematics/high-school/koxq1aea1ss1xrj3nk8kbl4z1g0mlx1c0y.png)
![t = 5](https://img.qammunity.org/2022/formulas/mathematics/college/iairpzhfxdcwdlq1z50yvdyzptdaybcpot.png)
They will have equal population at 5 hours.
Hence, b is incorrect
From the above computation, only (c) is correct