Answer:
![\displaystyle \sin (x) - \frac{ { \sin}^(3) (x)}{3} + \rm C](https://img.qammunity.org/2022/formulas/mathematics/high-school/9jh34c6nl1pn0qpjq5uqm11l97httqoqju.png)
Explanation:
we would like to integrate the following integration
![\displaystyle \int \cos ^(3) (x) dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/67iz4l9av3t6wixamujods6r9wb2hyx2.png)
in order to do so rewrite
![\displaystyle \int \cos ^(2) (x) \cos(x) dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/kgttmcwvhhz4owp39bo74iauuzpitkm4qe.png)
we can also rewrite cos²(x) by using trigonometric indentity
![\displaystyle \int( 1 - \sin ^(2) (x) )\cos(x) dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/y1ttedlc0ozyjzo1smbpazj1lsiagku2r2.png)
to apply u-substitution we'll choose
![\rm \displaystyle u = \sin ^{} (x) \quad \text{and} \quad du = \cos(x) dx](https://img.qammunity.org/2022/formulas/mathematics/high-school/po22o5d6qe2g4abxfpvowz1bjfn1wxplri.png)
thus substitute:
![\displaystyle \int( 1 - {u}^(2) )du](https://img.qammunity.org/2022/formulas/mathematics/high-school/bnhjxs7xk07yduu8hh1pt6wl7ttoyxzo68.png)
apply substraction integration and:
![\displaystyle \int 1du - \int {u}^(2) du](https://img.qammunity.org/2022/formulas/mathematics/high-school/xzpvokawg3okmv1dbn8csu2786dsxhw1fh.png)
use constant integration rule:
![\displaystyle u - \int {u}^(2) du](https://img.qammunity.org/2022/formulas/mathematics/high-school/opmteq0nqvf6vijwiydk51m9jes5fllo3n.png)
use exponent integration rule:
![\displaystyle u - \frac{ {u}^(3) }{3}](https://img.qammunity.org/2022/formulas/mathematics/high-school/ji3rs2q2fgtbs793xkaze2qkao2tex0z1v.png)
back-substitute:
![\displaystyle \sin (x) - \frac{ { \sin}^(3) (x)}{3}](https://img.qammunity.org/2022/formulas/mathematics/high-school/ct2ljsf36hev6rt1dkqryjr5fr75s5mkbj.png)
finally we of course have to add constant of integration:
![\displaystyle \sin (x) - \frac{ { \sin}^(3) (x)}{3} + \rm C](https://img.qammunity.org/2022/formulas/mathematics/high-school/9jh34c6nl1pn0qpjq5uqm11l97httqoqju.png)