Answer:
Area of triangle ABC = 6 square units
Explanation:
By applying Pythagoras theorem in right triangle ADC,
AC² = AD² + CD²
3² = (1.8)² + CD²
9 - 3.24 = CD²
CD = √5.76
CD = 2.4 units
By applying mean ratio theorem,
![(AD)/(CD)=(CD)/(DB)](https://img.qammunity.org/2022/formulas/mathematics/college/cqh84oxdkt9c78b2efcr0v1ovq0van7c0z.png)
CD² = AD × DB
(2.4)² = 1.8 × DB
DB =
![(5.76)/(1.8)](https://img.qammunity.org/2022/formulas/mathematics/college/mmouut8srlqj0v6cfucf20k8nuhvmsedpo.png)
DB = 3.2 units
AB = AD + DB
AB = 1.8 + 3.2
AB = 5 units
Since, area of a triangle ABC =
![(1)/(2)(\text{Base})(\text{Height})](https://img.qammunity.org/2022/formulas/mathematics/college/97fcejc0jdbuj7ev2e4q1s1faquo9o9lht.png)
=
![(1)/(2)(\text{AB})(\text{CD})](https://img.qammunity.org/2022/formulas/mathematics/college/jf618j9quvvg8l2l50n8rx0s4y9ngxftts.png)
=
![(1)/(2)(5)(2.4)](https://img.qammunity.org/2022/formulas/mathematics/college/8re9rbwz8bzbrhb2sa4z92pbss5n199hdw.png)
= 6 square units