Answer:
Max:
![Z = 120x + 130y](https://img.qammunity.org/2022/formulas/business/college/u1jok6ve7i7jdv6isc6fr8jhsw1v7rvq4r.png)
Subject to:
![2x + y \le 500](https://img.qammunity.org/2022/formulas/business/college/s2ptv549cum5kzp47ihlod5p94ww9t1gjo.png)
![2x + 3y \le 800](https://img.qammunity.org/2022/formulas/business/college/sn509g0r8ms0chjtlptmcmhdykxbbja00d.png)
![x,y \ge 0](https://img.qammunity.org/2022/formulas/business/college/1rpkl274u2wt7r44ybd5y8jmoshk6xk2uc.png)
Step-by-step explanation:
Given
Let:
![x \to Units\ of\ full\ size](https://img.qammunity.org/2022/formulas/business/college/i1fz8ar0vxqh6s688bynblbit5uqyt7rso.png)
![y \to Units\ of\ compact\ size](https://img.qammunity.org/2022/formulas/business/college/ss7hhumv1g7j3zc0czwf7jgpiuejrp466d.png)
Required
Formulate a linear optimization model
Constraints for time:
For the general assembly (hours), we have the following parameters:
![x \to 2](https://img.qammunity.org/2022/formulas/business/college/om2nz15y5qv8wfred9fhmb9l2jo3maulqj.png)
![y \to 1](https://img.qammunity.org/2022/formulas/business/college/8g2enwp5zqlgw456xpnjmytk6864chp5js.png)
So, the expression is:
--- (1)
For the electronic assembly (hours), we have the following parameters:
![x\to 2](https://img.qammunity.org/2022/formulas/business/college/xfk2wuprzlbg0pf3ez95ahsngoz9khpwio.png)
![y \to 3](https://img.qammunity.org/2022/formulas/business/college/sgvuudc8ltpfl5ld0huvsh2dz974mp2osu.png)
So, the expression is:
--- (2)
Solving further [Time available]:
![General\ Assembly \to 500](https://img.qammunity.org/2022/formulas/business/college/tvgrjmyu49y5qdo51bljkbm77lbjs08s0b.png)
![Electronic\ Assembly \to 800](https://img.qammunity.org/2022/formulas/business/college/n1eq1fna1oxff8ylnv8jywqxxoysqk3xo9.png)
So, (1) and (2) becomes:
![2x + y \le 500](https://img.qammunity.org/2022/formulas/business/college/s2ptv549cum5kzp47ihlod5p94ww9t1gjo.png)
![2x + 3y \le 800](https://img.qammunity.org/2022/formulas/business/college/sn509g0r8ms0chjtlptmcmhdykxbbja00d.png)
Constraints for selling:
--- at most
-- at most
The above can be represented as:
Earnings contribution:
![Total\ Full\ Size \to 120](https://img.qammunity.org/2022/formulas/business/college/tnmfxocfjpa43um8m976t4yzk3cl5c3rcc.png)
![Total\ Compact \to 130](https://img.qammunity.org/2022/formulas/business/college/lqrasvf4xcr0in6gjvdbr3tpfblws278n6.png)
The objective function to be maximized can then be modelled as:
![Z = 120x + 130y](https://img.qammunity.org/2022/formulas/business/college/u1jok6ve7i7jdv6isc6fr8jhsw1v7rvq4r.png)