Answer:
"2.82" seems to be the correct solution.
Explanation:
As we know,
A bag (Bag A) contains,
Red balls = 3
Blue ball = 1
A second bag (Bag B) contains,
Red balls = 1
Blue ball = 1
Now,
⇒ P(Bag A, red ball) =
![P(A)* P(r)* P(r)](https://img.qammunity.org/2022/formulas/mathematics/college/kaiyz1hvn5uiu678z66o8ukqtx4mrbj14f.png)
On substituting the values, we get
⇒ =
![(1)/(2)* (3)/(4)* (2)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/7mumt2xjbf17yt5hugwzbknzps7z51khjw.png)
⇒ =
![(1)/(4)](https://img.qammunity.org/2022/formulas/mathematics/college/8sgkbqu3iaqhrj3ec3ravgp4pqwnwrhmb4.png)
Similarly,
Probability of second bag will be:
⇒ P(Bag B) =
![(1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/f0qcv9cek84ihznc3s7uf39dlk9xfru67q.png)
hence,
In the first bag (Bag A), the expected number of red balls will be:
⇒
![E(n)=\Sigma P(n)* n](https://img.qammunity.org/2022/formulas/mathematics/college/axqas1q5x3afgrjtfo4kigx7oeqay101mj.png)
On substituting the values, we get
⇒
![=3 ((1)/(4))+2((1)/(8) )+4((1)/(24) )+3((1)/(12) )+3((4)/(20) )+4((1)/(20) )+2((3)/(20) )+(2)/(20)](https://img.qammunity.org/2022/formulas/mathematics/college/auo5aoyns81ffdims3sqle3txl8skx2qo7.png)
⇒
![= (169)/(60)](https://img.qammunity.org/2022/formulas/mathematics/college/sazw6xxkl1tkg62f3peq3ud3jr9807jj0m.png)
⇒
![=2.82](https://img.qammunity.org/2022/formulas/mathematics/college/zjev36r9f23ypxaym0ace37qumm3hsbn6f.png)