The values of x,y and z are as follows:
![(x = 25)(y = 15)(z = 58^\circ)](https://img.qammunity.org/2022/formulas/mathematics/college/owe9soeh4vipvrdfy17q3dkpc3ez4lm1yi.png)
To find the values of x, y, and z, we can use the properties of similar triangles.
Let's denote the corresponding sides and angles of triangles XYZ and RQS:
Corresponding sides: (XW = 15 + x, WY = 32, XY = 20) (from triangle XYZ) and (RQ = 30, QS = 24, RS = y) (from triangle RQS).
Corresponding angle:
(from triangle XYZ) and
(from triangle RQS).
Now, for similar triangles, the corresponding sides are proportional, and the corresponding angles are equal. We can set up the following ratios:For sides:
Substituting the given values:
![[ (15 + x)/(30) = (32)/(24) = (20)/(y) ]](https://img.qammunity.org/2022/formulas/mathematics/college/htxm8ew18ex0vy0alwak74qjxkjnclm1zu.png)
For angles:
![[ \angle W = \angle Q \implies 40^\circ = z - 18^\circ ]](https://img.qammunity.org/2022/formulas/mathematics/college/kpcz7yahj18mwqvgmfvxh2rr41laaen38y.png)
Now, you can solve these equations to find the values of x, y, and z.
Setting up the ratio for sides:
![[ (XW)/(RQ) = (WY)/(QS) = (XY)/(RS) ]](https://img.qammunity.org/2022/formulas/mathematics/college/xq96shrox2b81dydvv6aoko8sf2jg17lhy.png)
Substituting the given values:
![[ (15 + x)/(30) = (32)/(24) = (20)/(y) ]](https://img.qammunity.org/2022/formulas/mathematics/college/htxm8ew18ex0vy0alwak74qjxkjnclm1zu.png)
Simplifying the ratios:
![[ (1)/(2) + (x)/(30) = (4)/(3) \implies (x)/(30) = (4)/(3) - (1)/(2) ]](https://img.qammunity.org/2022/formulas/mathematics/college/x28pqlbp49rr5xejsviuw4jl4uocavsg3e.png)
Solving for x:
![[ (x)/(30) = (5)/(6) \implies x = 25 ]](https://img.qammunity.org/2022/formulas/mathematics/college/38dnimh769se8q9wrq8oy803bj8dh21arc.png)
So, (x = 25).
Setting up the equation for angles:
![[ \angle W = \angle Q \implies 40^\circ = z - 18^\circ ]](https://img.qammunity.org/2022/formulas/mathematics/college/kpcz7yahj18mwqvgmfvxh2rr41laaen38y.png)
Solving .for z:
![[ z = 40^\circ + 18^\circ = 58^\circ ]So, (z = 58^\circ)](https://img.qammunity.org/2022/formulas/mathematics/college/pqwk68lov05har2ojaeaog7h4r76eyv60e.png)
Substituting the value of x into the side ratio equation:
Substituting (x = 25):
![[ (15 + 25)/(30) = (40)/(30) = (4)/(3) = (20)/(y) ]](https://img.qammunity.org/2022/formulas/mathematics/college/nmgtawnn1krljqngdmxpphx5sxduy2k8ge.png)
Solving for y:
So, (y = 15).