Answer:
![7.32\ \text{m/s}](https://img.qammunity.org/2022/formulas/physics/college/ecf9fuab6ic28meh3bmcmq2dyw6gzs3r1y.png)
Step-by-step explanation:
= Velocity at initial point = 0
= Pressure in tank = 120 kPa
= Pressure at outlet = 101 kPa
= Density of kerosene =
![750\ \text{kg/m}^3](https://img.qammunity.org/2022/formulas/physics/college/41kg47h2bjggk6xkha8qr9vv4ob5djp394.png)
= Tank height = 15 cm
= Height of pipe exit = 0
= Acceleration due to gravity =
![9.81\ \text{m/s}^2](https://img.qammunity.org/2022/formulas/physics/high-school/xkqyb478wokfggtau8j6vfk5mhzepp8xfe.png)
From Bernoulli's equation we have
![(P_1)/(\rho g)+(v_1^2)/(2g)+Z_1=(P_2)/(\rho g)+(v_2^2)/(2g)+Z_2\\\Rightarrow (P_1)/(\rho g)+Z_1=(P_2)/(\rho g)+(v_2^2)/(2g)\\\Rightarrow v_2=\sqrt{2g((P_1)/(\rho g)+Z_1-(P_2)/(\rho g))}\\\Rightarrow v_2=\sqrt{2* 9.81((120* 10^3)/(750* 9.81)+0.15-(101* 10^3)/(750* 9.81))}\\\Rightarrow v_2=7.32\ \text{m/s}](https://img.qammunity.org/2022/formulas/physics/college/s07qd9frr92qqgbbg7nvx8osim33s0mp0l.png)
The exit velocity from the tube is
.