Given:
![\cos A=(4)/(√(65))](https://img.qammunity.org/2022/formulas/mathematics/college/udk64csy1omynfunu54pwd0qu8675wz4s5.png)
![\sin B=(1)/(√(2))](https://img.qammunity.org/2022/formulas/mathematics/college/jbj4gw1b6174384rzuvgkhus84kv90icyk.png)
A and B both lies in I quadrant.
To find:
The value of
.
Solution:
We know that, all trigonometric ratios are positive in first quadrant.
![sin^2\theta +\cos^2\theta =1](https://img.qammunity.org/2022/formulas/mathematics/college/ec47af67theay1gx5d6wdrwid8ps4730t5.png)
Using this we get
![\sin^2A +\cos^2A =1](https://img.qammunity.org/2022/formulas/mathematics/college/cx0fhs75rhj7j9ntpctxjktf39sy6yfm5f.png)
![\sin^2A +\left((4)/(√(65))\right)^2 =1](https://img.qammunity.org/2022/formulas/mathematics/college/6u6crrav4fgr3nz6tph3k5znqlwjjtymu4.png)
![\sin^2A +(16)/(65)=1](https://img.qammunity.org/2022/formulas/mathematics/college/gj1ubl8aiaatjh6fgtdjn4b9pk74xeky1q.png)
![\sin^2A =1-(16)/(65)](https://img.qammunity.org/2022/formulas/mathematics/college/jxa7hxutxrjf3qg88x94upxv3hrj2gov6i.png)
Taking square root on both sides, we get
[Only positive because A lies in I quadrant]
![\sin A =\sqrt{(49)/(65)}](https://img.qammunity.org/2022/formulas/mathematics/college/ljuaff8xyx7vyvhkmlo1xwhffotb3edfct.png)
![\sin A =(7)/(√(65))](https://img.qammunity.org/2022/formulas/mathematics/college/vu2l33pek7t2zz0ly4ugn73qss1tzp3kxk.png)
Similarly,
![\sin^2B +\cos^2B =1](https://img.qammunity.org/2022/formulas/mathematics/college/kjp2jla8of5skmzww37ax5ulf2wf5u8450.png)
![\left((1)/(√(2))\right)^2 +\cos^2B =1](https://img.qammunity.org/2022/formulas/mathematics/college/5c2izmidgeme8wcakyz6my6m1gsjt0kayf.png)
![(1)/(2)+\cos^2B =1](https://img.qammunity.org/2022/formulas/mathematics/college/5coojapoeevq381anfyp8803c8pzfqdlal.png)
![\cos^2B =1-(1)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/m05hmuwv15rc0cvu4avfqxy9jbx661c1hx.png)
Taking square root on both sides, we get
[Only positive because B lies in I quadrant]
![\cos B =\sqrt{(1)/(2)}](https://img.qammunity.org/2022/formulas/mathematics/college/ykrzbc29tzsv073ex2yqauerpzxm5xg3ck.png)
![\cos B =(1)/(√(2))](https://img.qammunity.org/2022/formulas/mathematics/college/sxrdfoi1kjel5i8khsswcpwchosifn981y.png)
Now,
![\sin (A+B)=\sin A\cos B+\cos A\sin B](https://img.qammunity.org/2022/formulas/mathematics/college/9dctnozgi8tyowfcj0x4bpzj7t2ouo454u.png)
![\sin (A+B)=(7)/(√(65))* (1)/(√(2))+(4)/(√(65))* (1)/(√(2))](https://img.qammunity.org/2022/formulas/mathematics/college/ysvf9tfmehuoqmdqx4kpjbkiwmdjr0ab59.png)
![\sin (A+B)=(7)/(√(130))+(4)/(√(130))](https://img.qammunity.org/2022/formulas/mathematics/college/dlx4c9er8vbk28scwvsbk2uy5qnzplecxe.png)
![\sin (A+B)=(11)/(√(130))](https://img.qammunity.org/2022/formulas/mathematics/college/52sygley3x2ro25nr83dv9knco2i1uu1em.png)
Therefore, the exact value of
is
.